

Written by James Farvour

Microsoft BASIC
Decoded & Other Mysteries
Foreword by Harvard Pennington

Edited by Jim Perry

Graphics by John Teal
Cover by Harvard Pennington

TRS-80 Information Series Volume 2

Contents

2

Foreword ...4
Chapter 1: Introduction ...5

Overview...6
Memory Utilization ...6
Communications Region ...8
Level II Operation ...8
Input Phase ..8
Interpretation & Execution..9
Verb Action ...11
Arithmetic & Math ..11
I/O Drivers...12
System Utilities ...13
IPL...13
Reset Processing (non disk)...13
Reset Processing (disk) ...14
Disk BASIC...14

Chapter 2: Subroutines ..15
I/O Calling Sequences ...15
Keyboard Input..15

Scan Keyboard ..15
Wait For Keyboard..16
Wait For Line ..16

Video Output ...16
Video Display..16
Clear Screen ..17
Blink Asterisk..17

Printer Output ..17
Print Character...17
Get Printer Status ..17

Cassette I/O ...18
Select & Turn On Motor ...18
Write Leader..18
Read Leader...18
Read One Byte ..18
Write One Byte..18

Conversion Routines ...19
Data Type Conversions ...19

FP To Integer...19
Integer To SP...19
Integer to DP ...19

ASCII to Numeric ...19
ASCII To Integer...19
ASCII To Binary ...19
ASCII To DP...20

Binary To ASCII ...20
HL To ASCII & Display ...20
Integer To ASCII...20
FP To ASCII..20

Arithmetic Routines ..21
Integer Routines ..21

Integer Addition ..21
Integer Subtraction ..21
Integer Multiplication..21
Integer Division...21
Integer Comparison ...21

Single Precision Routines..21
SP Addition ...22
SP Subtraction ...22
SP Multiply ...22
SP Divide ..22
SP Comparison..22

Double Precision Routines ..22
DP Addition...22
DP Subtraction ..23
DP Multiply...23
DP Divide..23
DP Comparison ...23

Math Routines ...23
Absolute Value..23
Return Integer..23
Arctangent ...24
Cosine..24
Raise Natural Base ..24
Raise X To Power Of Y ..24
Natural Log ...25
FP To Integer...25
Reseed Random Number...25
Random Number ...25
Sine..25
Square Root ...25
Tangent..26

Function Derivation...26
System Functions ..27

Compare Symbol...27
Examine Next Symbol...27
Compare DE:HL ...27
Test Data Mode ...27
DOS Function Call ..28
Load DEBUG..28
Interrupt Entry Point..28
SP In BC:DE To WRA1..28
SP Pointed To By HL To WRA128
SP Into BC:DE ..29
SP From WRA1 Into BC:DE29
WRA1 To Stack ..29
General Purpose Move ..29
Variable Move...29
String Move...30

BASIC Functions ..30
Search For Line Number ...30
Find Address Of Variable..30
GOSUB ...31
TRON..31
TROFF ..31
RETURN...31
Write Message...31
Amount Of Free Memory..31
Print Message ..32
Number Representation...32

Chapter 3: Cassette & Disk ...33

Microsoft BASIC Decoded
& Other Mysteries

3

Cassette I/O..33
Cassette Format ...34
SYSTEM Format ...34
Disk I/O ...35
Disk Controller Commands ...35
Disk Programming Details...37
DOS Exits ..37
Disk BASIC Exits..38
Disk Tables ..38
Disk Track Format ...39
Granule Allocation Table...39
Hash Index Table...39
Disk DCB ..40
Disk Directory ...41

Chapter 4: Addresses & Tables ...42
System Memory Map...42
Internal Tables ...42
Reserved Word List ...42
Precedence Operator Values ..43
Arithmetic Routines...43
Data Conversion Routines ...43
Verb Action Routines ..43
Error Code Table ...44
External Tables ..44
Mode Table..44
Program Statement Table...44
Variable List Table ..45
Literal String Pool Table ...46
Communications Region..46
DCB Descriptions ..48

Video DCB ..48
Keyboard DCB ..48
Printer DCB ...48

Interrupt Vectors..48
Memory Mapped I/O ...49
Stack Frame Configurations ..49

FOR Stack..49
GOSUB Stack..50
Expression Evaluation ...50

DOS Request Codes...51

Chapter 5: Example 1 ..52
A BASIC SORT Verb ...52

Chapter 6: Example 2 ..55
BASIC Overlay Program...55

Chapter 7: BASIC Decoded.. 58
the new ROMs .. 58

Chapter 8: BASIC Decoded.. 61
Comments Disassembled ROMs................................... 63

Acknowledgments

This book has been a long time in its creation, without the
help, advice and support of many people it would not have
been possible. In particular thanks are due to Rosemary
Montoya for her days of keyboarding, David Moore for
hours of example testing, Jerry De Diemar, Mary and MG
at Helens place for turning the Electric Pencil files into type
and Al Krug for his 24 hour message service.

This book was produced with the aid of several TRS-80
computer systems, an NEC Spinterm printer, the Electric
Pencil word processor with a special communications
package to interface to an Itek Quadritek typesetter, plus
lots of coffee and cigarettes.

Copyright 1981 James Farvour
Microsoft BASIC Decoded & Other Mysteries
ISBN 0 - 936200 - 0l - 4

The small print

 All rights reserved. No Part of this book may be reproduced by any
means without the express written permission of the publisher. Example
programs are for personal use only. Every reasonable effort has been made
to ensure accuracy throughout this book, but the author and publisher can
assume no responsibility for any errors or omissions. No liability is
assumed for damages resulting from the use of information contained
herein.

First Edition
First Printing

January 1981

Published by

IJG Computer Services

1260 W Foothill Blvd,
Upland, CA 91786 USA

Microsoft is a registered trademark of the Microsoft Corporation.
Radio Shack and TRS-80 are trademarks of the Tandy Corp.
NEWDOS and NEWDOS + are trademarks of Apparat Inc.
BASIC is a trademark of the Trustees of Dartmouth College.

4

Foreword

A little over a year ago, I said to Jim Farvour, 'Jim, why
don't you write a book about Microsoft BASIC and the
TRS-80? You have the talent and the expertise and
thousands of TRS-80 owners need help, especially me!'.
Needless to say, he agreed. Now it's one thing to SAY you
are going to write a book and quite another thing to actually
do it.

Writing a book requires fantastic discipline, thorough
knowledge of the subject matter, talent and the ability to
communicate with the reader. Jim Farvour has all of the
above.

This is no ordinary book. It is the most complete, clear,
detailed explanation and documentation you will see on this
or any similar subject.

There have been other books and pamphlets purporting to
explain the TRS-80 BASIC interpreter and operating
system. They have had some value, but only to experienced
machine language programmers - and even then these books
had many short-comings.

This book will delight both professional and beginner.
Besides walking you through power-up and reset (with and
without disk) there are detailed explanations of every single
area of the software system's operation. Examples, tables,
and flow-charts complement the most extensively
commented listing you have ever seen. There are over 7000
comments to Microsoft's BASIC interpreter and operating
system.

These are not the usual machine language programmer's
comments whose cryptic and obscure meanings leave more
questions than answers. These are English comments that
anyone can understand. Not only that, but when a comment
needs more explanation, you will find it on the next page.

This book even has something for anyone running Microsoft
BASIC on a Z-80 based computer. Microsoft, in its great
wisdom, has a system that generates similar code for similar
machines. Although you may find that the code is
organized differently in your Heath or Sorceror the routines
are, for the most part, identical!

Is this a great book? It's an incredible book! It may well be
the most useful book you will ever own.

H.C. Pennington

November 1980

5

Chapter 1

Introduction

Level II consists of a rudimentary operating system and a
BASIC language interpreter. Taken together, they are
called the Level II ROM System. There is a extension to
the Level II system called the Disk Operating System
DOS, and also an extension to the BASIC portion of
Level II called Disk BASIC.

Both Level II and DOS are considered independent
operating systems. How the two systems co-exist and co-
operate is a partial subject of this book. The real purpose
is to describe the fundamental operations of a Level II
ROM so that assembly language programmers can make
effective use of the system.

A computer without an operating system is of little use.
The reason we need an operating system is to provide a
means of communication between the computer and the
user. This means getting it to 'listen' to the keyboard so
that it will know what we want, and having it tell us
what's going on by putting messages on the video. When
we write programs, which tell the computer what to do,
there has to be a program inside the machine that's
listening to us. This program is called an operating
system.

It is impossible to give an exact definition of an
operating system. There are thousands of them, and each
has slight variations that distinguish it from others. These
variations are the result of providing specific user
features or making use of hardware features unique to the
machine that the operating system is designed for. In
spite of the differences between operating systems, the
fundamental internal routines on most are very similar -
at least from a functional point of view.

The common components in a general purpose, single
user system, such as Level II would consist of:

1. Drivers (programs) for all peripheral devices such as the
keyboard, video, printer, and cassette.

2. A language processor capability (such as BASIC, COBOL,
or FORTRAN) of some kind.

3. Supporting object time routines for any language provided.
This would include math and arithmetic routines, which are
implied by the presence of a language.

4. Ancillary support routines used by the language processor
and its implied routines. These are usually invisible to the
user. They manage resources such as memory and tables, and
control access to peripheral devices.

5. A simple monitoring program that continually monitors the
keyboard, or other system input device, looking for user input.

6. System utility commands. These vary considerably from
system to system. Examples from Level II would be: EDIT,
LIST, CLOAD, etc.

Remember that these definitions are very general. The
exact definition of any individual component is specific
to each operating system. In the case of the Level II
ROMs we'll be exploring each of the components in
more detail later on. First we will discuss how the
operating system gets into the machine to begin with.

Generally, there are two ways an operating system can
be loaded. The operating system can be permanently
recorded in a special type of memory called Read Only
Memory (ROM) supplied with the system. In this case
the operating system is always present and needs only to
be entered at its starting point, to initialize the system
and begin accepting commands.

6

Another way of getting the operating system into the
machine is to read it in from some external storage medium
such as a disk or cassette. In this case, however, we need a
program to read the operating system into the machine.
This program is called an Initial Program Loader (or IPL),
and must be entered by hand or exist in ROM somewhere
on the system. For the sake of simplicity, we'll assume that
all machines have at least an IPL ROM or ROM based
operating system.

In the TRS-80 Model I we have a combination of both
ROM and disk based operating systems. A Level II
machine has a ROM system which occupies the first 12K of
addressable memory. When the Power On or Reset button
is pressed control is unconditionally passed to location 0 or
66 respectively. Stored at these locations are JUMPS to
another region of ROM which initializes the system and
then prints the user prompt 'MEMORY SIZE?'.

In a Level II system with disks, the same ROM program
still occupies the first 12K of memory, however during
Power On or Reset processing another operating system is
read from disk and loaded into memory. This Disk
Operating System (DOS) occupies 5K of RAM starting at
16K. After being loaded control is then transferred to DOS
which initializes itself and displays the prompt 'DOS
READY'. So, even though a ROM operating system is
always present, if the machine has disks another operating
system is loaded also. In this case, the Level II ROM acts as
an IPL ROM.

It should be emphasized that the DOS and ROM operating
systems are complementary and co-operative. Each
provides specific features that the other lacks. Elementary
functions required by DOS are found in ROM, and DOS
contains extensions to the ROM, as well as unique capabil-
ities of its own.

Level II And DOS Overview

Level II is a stand alone operating system that can run by
itself. It is always present, and contains the BASIC
interpreter plus support routines necessary to execute
BASIC programs. It also has the facility to load programs
from cassette, or save them onto a cassette.

A Disk Operating System, (such as TRSDOS or NEWDOS)
is an extension to Level II that is loaded from disk during
the IPL sequence. It differs from Level II in several ways.
First, it has no BASIC interpreter, in order to key-in BASIC
statements control must be passed from DOS to Level II.
This is done by typing the DOS command BASIC. As well
as transferring control from DOS to Level II this command
also performs important initialization operations which will
be discussed later. Second, the commands recognized by
DOS are usually disk utility programs not embedded
routines - such as those in Level II. This means they must
be loaded from disk before they can be used. In turn this
means that there must be an area of RAM reserved for the
loading and execution of these utilities.

Memory Utilization

From the description of DOS and Level II we can see that
portions of RAM will be used differently depending on
which operating system is being used. Immediately after
IPL the memory is setup for each of the operating systems
as shown in figure 1.1 below. Notice the position of the
Central Processing Unit (CPU) in each part of the figure.

 Level II Level II
 (no disk) (with disk }

0K -->
CPU Level II ROM Level II
Here ---> ROM Addresses ROM
12K --> --------------- ------------ ----------------
 Communications RAM Communications
 Region Addresses Region
16k --> --------------- ----------------
 Dos Nucleus <-- CPU
 19k --> ---------------- Here
 Overlay Area
 Free 21k --> ----------------
 Space
 List Free
 Space
end of List
memory

Figure 1

Figure 1.1: Memory organization after the Initial Program Load.

A Level II system with disks that has had a BASIC
command executed would appear as in figure 1.2.

The first 16K of memory is dedicated to Level II and the
Communications Region regardless of the operating system
being used.

7

Starting at the end of the Communications Region or the
Disk BASIC area, depending on the system being used, is
the part of memory that will be used by Level II for storing
a BASIC program and its variables. This part of memory
can also be used by the programmer for keeping assembly
language programs. A detailed description of this area for a
Level II system without disks follows.

0K -->
 Level II
 ROM
12K --> ----------------
 Communications
 Region
16k --> ----------------
 DOS Nucleus
19k --> ----------------
 Overlay Area
19k --> ----------------
 Disk BASIC
19k --> ----------------
 Free
 Space

 end of List
 memory -->

Figure 1.2: Memory allocation for a system with disks, after a BASIC
command.

Although figure 1.3 shows the sub-divisions of RAM as
fixed they are not! All of the areas may be moved up or
down depending on what actions you perform. Inserting or
deleting a line from a program, for example, causes the
BASIC Program Table (called the Program Statement Table
or PST) to increase or decrease in size. Likewise defining a
new variable would increase the length of the variables list.
Since the origin of these tables may shift, their addresses
are kept in fixed locations in the Communications Region.
This allows the tables to be moved about as required, and
provides a mechanism for letting other users know where
they are.

 Level II and
 Comm. Region
16K --> ---------------
 BASIC
 Program
 Table

 BASIC
 Program
 Variables

 Stack

 String Area

Figure 1.3: Allocation of memory in a Level II system without disks.

The Program Statement Table (PST) contains source
statements for a BASIC program in a compressed format
(reserved words have been replaced with tokens repre-
senting their meaning). The starting address for this table is
fixed, but its ending address varies with the size of the
program. As program statements are added or deleted, the
end of the PST moves accordingly. A complete description
of this table can be found in chapter 4 (page 44).

Following the PST is the Variable List Table (or VLT).
This contains the names and values for all of the variables
used in a BASIC program. It is partitioned into four sub-
tables according to the following variable types: simple
variables (non dimensioned); single dimensioned lists;
doubly dimensioned lists and triple dimensioned lists.
Variable names and their values are stored as they are
encountered during the execution of a program. The
variable table will change in size as new variables are added
to a program, and removing variables will cause the table to
shrink. After a variable is defined it remains in the table,
until the system is reinitialized. For a full description of this
table see chapter 4 (page 45).

Not shown in figure 1.3 is the Free Space List or FSL. It is
a section of memory that initially extends from the end of
the Communications Region to the lower boundary of the
String Area. There are two parts to this list, the first is used
to assign space for the PST and VLT. For these areas space
is assigned from low to high memory. The second part of
the FSL is used as the Stack area. This space is assigned in
the opposite direction - beginning at the top of the String
Area and working down towards Level II.

The stack area shown is a dynamic (changeable) table. It is
used by the Level II and DOS systems as a temporary
storage area for subroutine return addresses and the
hardware registers. Any CALL or RST instruction will
unconditionally cause the address of the following instruc-
tion to be saved (PUSH'd) onto the stack, and the stack
pointer is automatically decremented to the next lower
sequential address. Execution of a RET instruction (used
when exiting from a subroutine) removes two bytes from
the stack (the equivalent of a POP instruction) and reduces
the stack pointer by two.

Storage space in the stack area can be allocated by a
program, but it requires careful planning. Some BASIC
subroutines such as the FOR-NEXT routine, save all values
related to their operation on the stack. In the FOR NEXT
case an eighteen byte block (called a frame) is PUSH'd onto
the stack and left there until the FOR-NEXT loop is
completed.

Before space is assigned in either part of the FSL (except
for Stack instructions such as CALL or PUSH) a test is
made (via a ROM call) to insure there is enough room. If
there is insufficient space an Out of Memory error is given
(OM). See chapter 2 (page 31) for a description of the ROM
calls used to return the amount of space available in the
FSL.

8

The last area shown in the memory profile is the string area.
This is a fixed length table that starts at the end of memory
and works toward low memory. The size of this area may
be specified by the CLEAR command. Its default size is 50
bytes. String variables are stored in this area, however
strings made equal to strings, String$ and quoted strings are
stored in the PST.

Earlier it was mentioned that there are six general
components that form an operating system. Because of the
way Level II was put together the individual pieces for
some components are scattered around in ROM, instead of
being collected together in a single area. Figure 1.4 is an
approximate memory map of addresses in Level II. For
exact addresses and description of these regions see chapter
4.

 Level II ROM

Decimal Address
 0000 -->
 Peripheral
 Drivers
 1800 --> ---------------
 Math and
 Arithmetic
 5600 --> ---------------
 Support
 6700 --> ---------------
 Monitoring
 7100 --> ---------------
 BASIC
 Interpreter
 11000 --> ---------------
 Utilities
 12000 -->

 Figure 1.4: Approximate memory map of Level II addresses

The Communications Region

The Communications Region is a scratch pad memory for
the Level II ROMs. An example of addresses stored here
are those for the PST and the variables list. Also BASIC
supports variable types that require more space than the
working registers can provide, and as a result certain
arithmetic operations require temporary storage in this
region.

Another important use of the Communications Region is to
provide a link between Level II and DOS - for passing
addresses, and data, back and forth. The DOS Exit
addresses and Disk BASIC addresses are kept in this area.
As mentioned earlier a Level II system, with disks, begins
execution in the DOS system. Control is passed from DOS
to Level II only after the command BASIC has been
executed (which also updates the Communications Region
by storing the DOS Exits and Disk BASIC addresses).

Because Level II is in ROM it is impractical to try and
modify it. Yet, changes to an operating system are a
practical necessity that must be considered. In order to
solve this problem the Level II system was written with
jumps to an area in RAM, so that future changes could be
incorporated into the ROM system. Those jumps are called
DOS Exits, and on a system without a DOS they simply
return to Level II. When a DOS is present, the jump

addresses are changed to addresses within Disk BASIC
which allows changes to be made to the way Level II
operates.

The Disk BASIC addresses are used by Level II when a
Disk BASIC command such as GET or PUT is en-
countered. They are needed because the code that supports
those operations is not present in Level II. It is a part of
Disk BASIC that is loaded into RAM, and since it could be
loaded anywhere Level II needs some way of locating it.
The Disk BASIC exits are a group of fixed addresses,
known to both Level II and Disk BASIC, which allows
Level II to pass control to Disk BASIC for certain verb
action routines.

Another interesting aspect of the Communications Region
is that it contains a section of code called the Divide
Support Routine. This code is called by the division
subroutines, to perform subtraction and test operations. It is
copied from Level II to the RAM Communications Region
during the IPL sequence. When a DOS is present it is
moved from ROM to RAM by the DOS utility program
BASIC.

An assembly language program using the Level II division
routine on a disk system which has not had the BASIC
command executed will not work because the Divide
Support Routine is not in memory. Either execute the
BASIC utility or copy the support routine to RAM, when
executing assembly language routines that make division
calls.

Level II Operation

Earlier in this chapter there was a brief description of six
components which are generally found in all operating
systems. Using those components as a guideline, Level II
can be divided into the following six parts:

Part 1 ... Input or scanner routine.
Part 2 ... Interpretation and execution routine.
Part 3 ... Verb action routines
Part 4 ... Arithmetic and math routines
Part 5 ... I/O driver routines.
Part 6 ... System function routines.

There is another part common to all systems which is not
included in the above list. This part deals with system
initialization (IPL or Reset processing), and it will be
discussed separately. Continuing with the six parts of Level
II, we will begin at the point where the system is ready to
accept the first statement or command. This is called the
Input Phase.

Part 1 - Input Phase

The Input Phase is a common part of all operating systems.
Its function is to accept keyboard input and respond to the
commands received. In the case of a Level II system it
serves a dual purpose - both system commands and BASIC
program statements are processed by this code.

9

Entry to the Input Scan routine is at. This is an initial entry
point that is usually only called once. The message
'READY' is printed, and a DOS Exit (41AC) is taken
before the main loop is entered. Systems without disks
jump to this point automatically, at the end of IPL
processing. For systems with disks, this code is entered by
the DOS utility program BASIC at the end of its
processing. The Input or Scanner phase is summarized
below.

1. Get next line of input from keyboard.
2. Replace reserved words with tokens.
3. Test for a system command such as RUN, CLOAD, etc. or a
DIRECT STATEMENT (BASIC statement without a line number)
and branch to 6 if true.
4. Store tokenized statement in program statement table.
5. Return to step 1.
6. Begin interpretation and execution

The Input Phase loop begins at 1A33. After printing the
prompt >, or a line number if in the Auto Mode a CALL to
03612 is made to read the next line. Then the line number
is converted from ASCII to binary with a CALL to 1E5A.
The statement is scanned and reserved words are replaced
by tokens (CALL 1BC0). Immediately after tokenization a
DOS Exit to 41B2 is taken. Upon return a test for a line
number is made. If none is found a System Command or
Direct Statement is assumed, and control is passed to the
Execution Driver at 1D5A. On systems without disks this
test is made at 1AA4. On a disk system the test, and
branch, is made at the DOS Exit 41B2 called from 1AA1.

If a line number is present the incoming line is added to the
PST, the pointers linking each line are updated by the
subroutine at 1AFC to 1B0E. If the line replaces an
existing line, the subroutine at 2BE4 is called to move all of
the following lines down over the line being replaced.

When in the Auto Mode the current line number is kept in
40E2 and 40E3 the increment between lines is stored at
40E4. The code from 1A3F to 1A73 prints and maintains
the automatic line number value. Null lines (statements
consisting of a line number only) are discarded. They are
detected by a test at 1ABF.

Part 2 - Interpretation & Execution

Statement and command execution in a Level II system is
by interpretation. This means that a routine dedicated to the
statement type, or command, is called to interpret each line
and perform the necessary operations. This is a common
method for system command execution. With DOS, for
example, separate modules are loaded for commands such
as FORMAT and COPY. In some Systems, commands
which are related may be combined into a single module,
after the module has been loaded it decides which sub-
function to execute by examining (interpreting) the name
which called it.

Program execution by interpretation is not common except
on microcomputers, and even then only for selected
languages such as BASIC and APL. The alternative to an
interpreter is program compilation and execution, with the
use of a compiler.

Compilers translate source statements into directly exe-
cutable machine language code (called object code). The
object code is then loaded into RAM as a separate step
using a utility program called a Loader. After loading the
object code into RAM, control is passed to it and it executes
almost independently of the operating system.

Not all source code is converted to object code by a
compiler. Some statements such as READ and WRITE or
functions such as SINE or COSINE may be recognized by
the compiler, and rather than generate code for them,
subroutine calls for the specific routines will be produced.

These routines are in object code form in a library file.
When the loader loads the object code, for the compiled
program, any subroutine calls are satisfied (the sub-
routines are loaded) from the library file. A loader that will
take modules from a library is called a linking loader.

An interpreter operation is much simpler by comparison.
Each source statement is scanned for reserved words such
as FOR, IF, GOTO, etc.. Every reserved word is replaced
by a unique numeric value called a token then the tokenized
source statement is saved. In Level II it is saved in the
Program Statement Table. When the program is run control
goes to an execution driver which scans each statement
looking for a token. When one is found control is given to
a routine associated with that token. These token routines
(also called verb action routines) perform syntax checks
such as testing for valid data types, commas in the correct
place, and closing parenthesis. In a compiler entered action
routine there is no syntax checking because that would have
been done by the compiler - and the routine would only be
called if all of the parameters were correct.

10

In Level II the execution phase is entered when a statement
without a line number has been accepted, or when a RUN
command is given. This may be a system command or a
single BASIC statement that is to be executed. When a
RUN command is received an entire BASIC program is to
be executed. The Execution driver loop starts at 1D5A and
ends at 1DE1. These addresses are deceptive though,
because portions of this code are shared with other routines.

The steps in this phase are summarized as follows. For
more details see figure 1.5.

1. Get the first character from the current line in the PST. If the end
of the PST has been reached then return to the Input Phase.
2. If the character is not a token. go to step 6.
3. If the token is greater than BC it must be exactly FA (MID$),
otherwise a syntax error is given.
4. If the token is less than BC. use it as an index into the verb action
table.
5. Go to action routine and return to step 1.
6. Assignment section. Locate variable name, if it's not defined, then
create it.
7. Call expression evaluation.
8. Return to step 1.

Figure 1.5: Flowchart of the execution driver routine.

The Execution driver begins by loading the first character
from the current line in the PST. This character is tested to
see if it is a token (80-FA) if not, the current line is
assumed to be an assignment statement such as:

A = 1.

The assignment statement routine begins at 1F21. It is
similar to the other action routines, except that it is entered

directly rather than through a table look-up process. Before
it is entered a return address of 1D1E in the execution
driver is PUSH'd onto the stack, so it can exit as any other
action routine.

The assignment routine assumes that the pointer for the
current line is immediately to the left of the variable name
to be assigned. It locates, or creates an entry for the variable
name, tests for an equals () after the name - and then
CALLs 2337. The routine at this location evaluates the
expression. The result is converted to the correct mode, and
stored at the variable address.

Assuming that a good token was found as the first
character, a second test is made to see if it is valid as the
first token in a line. Valid tokens which can occur at the
start of a line are 80 - BB. The tokens BC - F9 can only
occur as part of an assignment statement or in a particular
sequence such as 8F (IF) 'Expression' CA (then) XXXX.
The MID$ token FA is the only exception to this rule.
There is a test for it at 2AE7 where a direct jump to its Disk
BASIC vector (41D9) is taken. If the token is between 80
and BB it is used as an index into a verb action routine table
and the address of the action routine, for that token is
located. Control is then passed to that action routine which
will do all syntax checking and perform the required
function.

Parameters for the verb routines are the symbols in the
statement following the token. Each routine knows what
legitimate characters to expect, and scans the input string
from left to right (starting just after the token) until the end
of the parameters are reached. The end of the parameters
must coincide with the end of the statement, or a syntax
error is produced.

Symbols which terminate a parameter list vary for each
action routine. Left parentheses ')' terminate all math and
string functions. A byte of machine zeros (00) stops
assignment statements, other routines may return to the
execution phase after verifying the presence of the required
value.

As each verb routine is completed control is returned to the
Execution driver, where a test for end of statement (EOS)
or a compound statement (:) is made. The EOS is one byte
of machine zeros. If EOS is detected the next line from the
Program Statement Table is fetched, and it becomes the
current input line to the Execution driver.

When a System Command or a Direct Statement has been
executed there is no pointer to the next statement, because
they would have been executed from the Input Phase's input
buffer. This is in a different area than the PST where
BASIC program statements are stored. When the RUN
command is executed, it makes the Execution driver get its
input from the PST.

When the end of a BASIC program, or a system command,
is reached, control is unconditionally passed to the END
verb which will eventually return to the Input Phase. Any

11

errors detected during the Execution and Interpretation
phase cause control to be returned to the Input Phase after
printing an appropriate error code. An exception is the
syntax error, which exits directly to the edit mode.

Part 3 - Verb Action

The verb action routines are where the real work gets done.
There are action routines for all of the system commands
such as CLOAD, SYSTEM, CLEAR, AUTO as well as the
BASIC verbs such as FOR, IF, THEN, GOTO, etc. In
addition there are action routines for all the math functions
and the Editor sub-commands.

Verb action routines continue analyzing the input string
beginning at the point where the Execution phase found the
verb token. Like the Execution phase, they examine the
string in a left to right order looking for special characters
such as (,,), or commas and tokens unique to the verb being
executed. If a required character is missing, or if an
illogical condition arises, a syntax error is generated.

The verb routines use a number of internal subroutines to
assist them while executing program statements. These
internal routines may be thought of as part of the verb
action routines, even though they are used by many other
parts of the Level II system.

A good example of an internal routine is the expression
evaluation routine, which starts at 2337. Any verb routine
that will allow, and has detected, an expression as one of its
arguments may CALL this routine. Examples of verb
action routines that allow expressions in their arguments are
IF, FOR, and PRINT. In turn the expression evaluation
routine will CALL other internal routines (such as 260D to
find the addresses of variables in expressions being
evaluated). Since subscripted variables can have
expressions as their subscript, the find address routine may
in turn CALL back to the expression evaluation routine!

This type of processing is called recursion, and may be
forced by the following expression:

c0 = c(1a/bc(2d)/c(1*c0))

Other internal routines used by the verb action routines are :
skip to end of statement 1F05; search Stack for a FOR
frame 1936 and build a literal string pool entry 2865.

Any intermediate results, which may need to be carried
forward, are stored Work Register Area 1 (WRA1) in the
Communications Region. Some verbs such as FOR build a
stack frame which can be searched for and recognized by
another verb such as NEXT. All of the action routines
except MID$ are entered with the registers set as shown in
figure 1.6. A full list of verb action routines, and their entry
points is given in chapter 4 (page 43).

 Register Contents

 AF - Next element from code string
 following token.
 CARRY - if numeric
 No CARRY - if alpha
 BC - Address of the action routine
 DE - Address of action token in code string
 HL - Address of next element in code string

Figure 1.6: Register settings for verb action routine entry.

Part 4 - Arithmetic & Math

Before going into the Arithmetic and Math routines we
should review the arithmetic capabilities of the Z-80 CPU
and the BASIC interpreter.

The Z-80 supports 8 bit and 16 bit integer addition and
subtraction. It does not support multiplication or division,
nor does it support floating point operations. Its register set
consists of seven pairs of 16 bit registers. All arithmetic
operations must take place between these registers.
Memory to register operations are not permitted. Also
operations between registers are extremely restricted,
especially with 16 bit quantities.

The BASIC interpreter supports all operations e.g.,
addition, subtraction, multiplication, and division for three
types (Modes) of variables which are: integer, single
precision and double precision. This support is provided by
internal subroutines which do the equivalent of a hardware
operation. Because of the complexity of the software,
mixed mode operations, such as integer and single precision
are not supported. Any attempt to mix variable types will
give unpredictable results.

The sizes for the variable types supported by BASIC are as
follows:

Integer………. 16 bits (15 bits 1 sign bit)
Single Precision 32 bits (8 bit biased exponent

plus 24 bit signed mantissa)
Double Precision …. 56 bits (8 bit biased exponent

plus 48 bit signed mantissa)

12

From this it is clear that the registers are not large enough to
hold two single or double precision values, even if floating
point operations were supported by the hardware. Because
the numbers may be too big for the registers, and because of
the sub-steps the software must go through an area of RAM
must be used to support these operations

Within the Communications Region two areas have been
set aside to support these operations. These areas are
labeled: Working Register Area 1 (WRAl) and Working
Register Area 2 (WRA2). They occupy locations 411D to
4124 and 4127 to 412E respectively. They are used to hold
one or two of the operands, depending on their type, and the
final results for all single and double precision operations.
A description of the Working Register Area follows.

Address Integer
Single

Precision
Double

Precision

411D LSB

411E NMSB

411F NMSB

4120 NMSB

4121 LSB LSB NMSB

4122 MSB NMSB NMSB

4123 MSB MSB

4124 Exponent Exponent

Where:
 LSB = Least significant byte
 NMSB = Next most significant byte
 MSB = Most significant byte

WRA2 has an identical format.

Figure 1.7: Working Register Area layout.

 Integer

Destination Source
Register Operation Registers

HL Addition HL + DE
HL Subtraction HL - DE
HL Multiplication HL * DE

WRA1 Division DE / HL

 Single Precision

 Destination Source
 Register Operation Registers

WRA1 Addition WRA1 + (BCDE)
WRA1 Subtraction WRA1 - (BCDE)
WRA1 Multiplication WRA1 * (BCDE)
WRA1 Division WRA1 / (BcDE)

 Double Precision

Destination Source
Register Operation Registers

WRA1 Addition WRA1 + WRA2
WRA1 Subtraction WRA1 - WRA2
WRA1 Multiplication WRA1 * WRA2
WRA1 Division WRA1 / WRA2

 Figure 1.8: Register arrangements used by arithmetic routines.

Because mixed mode operations are not supported integer
operations can only take place between integers, the same
being true for single and double precision values. Since
there are four arithmetic operations (+, -, *, and /), and
three types of values, there must be twelve arithmetic
routines. Each of these routines knows what type of values
it can operate on, and expects those values to be loaded into
the appropriate hardware or working registers before being
called. Figure 1.8 shows the register assignments used by
the arithmetic routines. These assignments are not valid for
the Math routines because they operate on a single value,
which is always assumed to be in WRA1.

The math routines have a problem in that they must perform
arithmetic operations, but they do not know the data type of
the argument they were given. To overcome this another
byte in the Communications Region has been reserved to
indicate the data type (Mode) of the variable in WRA1.
This location is called the Type flag. Its address is 40AF
and contains a code indicating the data type of the current
contents of WRAl. Its codes are:

CODE DATA TYPE (MODE)

02 Integer
03 String
04 Single precision
08 Double precision

The math routines do not usually require that an argument
be a particular data type, but there are some exceptions (see
chapter 2, page xx, for details).

Part 5 - I/O Drivers

Drivers provide the elementary functional capabilities
necessary to operate a specific device. Level II ROM
contains Input/Output (I/O) drivers for the keyboard, video,
parallel printer, and the cassette. The disk drivers are part
of the DOS system and consequently will not be discussed.

All devices supported by Level II, with the exception of the
cassette, require a Device Control Block (DCB). The
drivers use the DCB's to keep track of perishable informa-
tion, such as the cursor position on the video and the line
count on the printer. The DCB's for the video, keyboard,
and printer are part of the Level II ROM. Since information
must be stored into them, they are moved from ROM to
fixed addresses in RAM (within the Communications
Region) during IPL.

The Level II drivers must be called for each character that
is to be transmitted. The drivers cannot cope with the
concept of records or files, all record blocking and de-
blocking is left to the user. Level II has no general purpose
record management utilities. For BASIC programs you
must use routines such as PRINT and INPUT to block off
each record.

13

When writing to a cassette, for example, the PRINT routine
produces a header of 256 zeroes, followed by an A5. After
the header has been written each individual variable is
written as an ASCII string, with a blank space between each
variable, finally terminating with a carriage return. Non
string variables are converted to their ASCII equivalent.

INPUT operation begins with a search for the 256 byte
header. Then the A5 is skipped and all variables are read
into the line buffer until the carriage return is detected.
When the INPUT is completed all variables are converted
to their correct form and moved to the VLT.

The keyboard, video and line printer drivers can be entered
directly or through a general purpose driver entry point at
03C2. Specific calling sequences for each of these drivers
are given in chapter 2.

The cassette driver is different from the other drivers in
several respects. It does its I/O in a serial bit mode whereas
all of the other drivers work in a byte (or character) mode.
This means that the cassette driver must transmit data on a
bit-by-bit basis. The transmission of each bit is quite
complex and involves many steps. Because of the timing
involved, cassette I/O in a disk based system, must be done
with the clock off (interrupts inhibited). For more details
on cassette I/O see chapter 4.

Part 6 - System Utilities

System utilities in Level II ROM are the Direct Com-
mands:
AUTO, CLEAR, CSAVE, CLOAD, CLEAR, CONT,
DELETE, EDIT, LIST, NEW, RUN, SYSTEM, TROFF
and TRON. These commands may be intermixed with
BASIC program statements. However, they are executed
immediately rather than being stored in the program
statement table (PST). After executing a Direct Command,
control returns to the Input Phase.

After an entire BASIC program has been entered (either
through the keyboard or via CLOAD or LOAD, on a disk
system), it must be executed by using the RUN command
This command is no different from the other system
commands except that it causes the BASIC program in the
PST to be executed (the Execution Phase is entered). As
with other system commands, when the BASIC program
terminates, control is returned to the Input Phase.

System Flow During IPL

The IPL sequence has already been discussed in general
terms. A complete description of the procedure follows.
The description is divided into separate sections for disk
and non-disk systems.

Reset Processing (non-disk)

Operations for this state begin at absolute location zero
when the Reset button is pressed. From there control is
passed to 0674 where the following takes place.
00UFC
 A) Ports FF (255 decimal) to 80 (128 decimal) are
initialized to zero. This clears the cassette and selects 64
characters per line on the video.

 B) The code from 06D2 to 0707 is moved to 4000 - 4035.
This initializes addresses for the restart vectors at 8, 10, 18
and 20 (hex) to jump to their normal locations in Level II.
Locations 400C and 400F are initialized to RETURNs.

If a disk system is being IPL'd 400C and 400F will be
modified to JUMP instructions with appropriate addresses
by SYS0 during the disk part of IPL. The keyboard, video,
and line printer DCB's are moved from ROM to RAM
beginning at address' 4015 to 402C after moving the DCB's
locations 402D, 4030, 4032 and 4033 are initialized for
non-disk usage. They will be updated by SYS0 if a disk
system is being IPL'd.

 C) Memory from 4036 to 4062 is set to machine zeros.
(00)

After memory is zeroed, control is passed to location 0075
where the following takes place:
00UFC
 A) The division support routine is moved from
@FT218F7-191B to 4080-40A6. This range also includes
address pointers for the program statement table. Location
41E5 is initialized to:

LD A, (2C00)

 B) The input buffer address for the scanner routine is set
to 41E5. This will be the buffer area used to store each line
received during the Input Phase.

 C) The Disk BASIC entry vectors 4152-41A5 are
initialized to a JMP to 012D. This will cause an L3
ERROR if any Disk BASIC features are used by the
program. Next, locations 41A6-41E2 (DOS exits) are set to
returns (RETs). 41E8 is set to zero and the current stack
pointer (CSP) is set to 41F8. (We need a stack at this point
because CALL statements will be executed during the rest
of the IPL sequence and they require a stack to save the
return address).

 D) A subroutine at 1B8F is called. It resets the stack to
434C and initializes 40E8 to 404A. It then initializes the
literal string pool table as empty, sets the current output
device to the video, flushes the print buffer and turns off the
cassette. The FOR statement flag is set to zero, a zero is
stored as the first value on the stack and control is returned
to 00B2.

 E) The screen is cleared, and the message 'MEMORY
SIZE' is printed. Following that, the response is accepted

14

and tested, then stored in 40B1. Fifty words of memory are
allotted for the string area and its lower boundary address is
stored in 40A0.

F) Another subroutine at 1B4D is called to turn Trace off,
initialize the starting address of the simple variables (40F9),
and the program statement table (40A4). The variable type
table 411A is set to single precision for all variables, and a
RESTORE is done. Eventually control is returned to 00FC.

G) At 00FC the message 'RADIO SHACK Level II BASIC'
is printed and control is passed to the Input Phase.

Reset Processing (disk systems)

Operations for this state begin at location 0000 and jump
immediately to 0674. The code described in paragraphs A,
B, and C for RESET processing (non-disk systems on page
xx) is common to both IPL sequences. After the procedure
described in paragraph C has taken place a test is made to
determine if there are disks in the system. If there are no
disk drives attached, control goes to 0075, otherwise.
00UFC
A) Disk drive zero is selected and positioned to track 0
sector 0. From this position the sector loader (BOOT/SYS)
is read into RAM locations 4200 - 4455. Because the sector
loader is written in absolute form it can be executed as soon
as the READ is finished.

After the READ finishes, control is passed to the sector
loader which positions the disk to track 11 sector 4. This
sector is then read into an internal buffer at 4D00. The
sector read contains the directory entry for SYS0 in the first
32 bytes. Using this data the sector loader computes the
track and sector address for SYS0 and reads the first sector
of it into 4D00.

B) Following the READ, the binary data is unpacked and
moved to its specified address in RAM. Note that SYS0 is
not written in absolute format so it cannot be read directly
into memory and executed. It must be decoded and moved
by the sector loader. Once this is done control is passed to
SYS0 beginning at address 4200.

C) The following description for SYS0 applies to
NEWDOS systems only. It begins by determining the
amount of RAM memory and storing its own keyboard
driver address in the keyboard DCB at 4015. The clock
interrupt vector address (4012) is initialized to a CALL
4518. Next, more addresses are initialized and the
NEWDOS header message is written.

D) After writing the header, a test for a carriage return on
the keyboard is made. If one is found, the test for an
AUTO procedure is skipped and control passes immedi-
ately to 4400 were the DOS Input SCANNER phase is
initiated.

Assuming a carriage return was not detected the Granule
Allocation Table (GAT) sector (track 11 sector 0) is read
and the E0 byte is tested for a carriage return value. Again,
if one is found (the default case) control goes to 4400,
otherwise a 20 byte message starting at byte E0 of the GAT
sector is printed. Then control is passed to 4405 where the
AUTO procedure is started. Following execution of the
AUTO procedure control will be passed to the DOS Input
Phase which starts at 4400.

Disk BASIC

One of the DOS commands is a utility program called
BASIC. In addition to providing a means of transferring
control from DOS to Level II, it contains the interpretation
and execution code for the following Disk BASIC
statements:

TRSDOS and NEWDOS
CVI CVS CVD MKI$ MKS$ MKD$ DEFFN DEFUSR
TIME$ CLOSE FIELD GET PUT AS LOAD SAVE
KILL MERGE NAME LSET RSET INSTR LINE &H
&O CMD"S" CMD"T" CMD"R" CMD"D" CMD"A" USR0-USR9
MID$(left side of equation) OPEN"R" OPEN"O" OPEN"I"

NEWDOS only
OPEN"E" RENUM REF CMD"E" CMD"DOS command"

An additional command peculiar to TRSDOS only is:
 CMD"X", <ENTER> - Version 2.1
 CMD"#", <ENTER> - Version 2.2 & 2.3

These hidden, and undocumented commands display a
'secret' copyright notice by Microsoft. Also undocumented
is CMD'A' which performs the same function as CMD'S'.

Disk BASIC runs as an extension to Level II. After being
loaded, it initializes the following section of the Com-
munications Region:
00UFC
1. DOS exits at 41A6 - 41E2 are changed from RETURN's
to jumps to locations within the Disk BASIC utility.

2. The Disk BASIC exits at 4152 - 41A3 are changed from
JP 12D L3 syntax error jumps to addresses of verb action
routines within Disk BASIC.

Following the initialization of the Communications Region,
DCBs and sector buffers for three disk files are allocated at
the end of Disk BASIC's code. Control is then given to the
Input Scanner in Level II (1A19).

Disk BASIC will be re-entered to execute any Disk BASIC
statement, or whenever a DOS Exit is taken from Level II.
The Disk BASIC entry points are entered as though they are
verb action routines. When finished control returns to the
execution driver.

Note: Disk BASIC occupies locations 5200 - 5BAD
(NEWDOS system). Each file reserved will require an
additional (32 256 decimal) bytes of storage. Assembly
programs should take care not to disturb this region when
running in conjunction with a BASIC program.

15

Chapter 2

Subroutines

Level II has many useful subroutines which can be used by
assembly language programs. This chapter describes a
good number of the entry points to these subroutines.
However there are many more routines than those described
here. Using the addresses provided as a guide, all of the
Level II routines dealing with a particular function may be
easily located.

Before using the math or arithmetic calls study the working
register concept and the mode flag (see chapter 1 page 14).
Also, remember that the Division Support Routine (see
chapter 1 page 10) is loaded automatically only when
IPL'ing a non-disk system. On disk systems it is loaded by
the Disk BASIC utility. If you are using a disk system and
executing an assembly language program, which uses the
any of the math or arithmetic routines that require division,
you must enter BASIC first or load the Division Support
Routine from within your program.

The I/O calling sequences described are for Level II only.
The TRSDOS and Disk BASIC Reference Manual contains
the DOS calling sequences for disk I/O.

The SYSTEM calls and BASIC functions are somewhat
specialized, consequently they may not always be useful for
an application written entirely in assembly language.
However if you want to combine assembly and BASIC you
will find these routines very useful.

I/O Calling Sequences

Input and Output (I/O) operations on a Model I machine are
straight forward, being either memory mapped or port
addressable. There are no DMA (direct memory access)
commands and interrupt processing is not used for I/O
operations.

The selection of entry points presented here is not
exhaustive. It covers the more general ones and will point
the reader in the right direction to find more specialized
entry points, if needed.

In memory mapped operations, storing or fetching a byte
from a memory location, causes the data to be transferred
between the CPU register and the target device. Examples

of memory mapped devices are the video, the keyboard,
and the disk. Programmed I/O (via ports) is a direct
transfer of data between a register and a device. The only
device using port I/O is the cassette.

Keyboard Input

The keyboard is memory mapped into addresses 3800 -
3BFF. It is mapped as follows:

Bit <------------------- Keyboard Addresses ------------------->

3801 3802 3804 3808 3810 3820 3840 3880

0 @ H P X 0 8 ENTER SHIFT

1 A I Q Y 1 9 CLEAR

2 B J R Z 2 : BREAK

3 C K S 3 ; UP ARW

4 D L T 4 , DN ARW

5 E M U 5 - LT ARW

6 F N V 6 . RT ARW

7 G O W 7 / SP BAR

When a key is depressed, a bit in the corresponding position
in the appropriate byte, is set, also bits set by a previous key
are cleared. You will notice that only eight bytes
(3801 - 3880) are shown in the table as having any
significance. This might lead one to believe that the bytes in
between could be used. Unfortunately this is not the case as
the byte for any active row is repeated in all of the unused
bytes. Thus all bytes are used.

CALL 002B Scan Keyboard

Performs an instantaneous scan of the keyboard. If no key
is depressed control is returned to the caller with the A-
register and status register set to zero. If any key (except
the BREAK key) is active the ASCII value for that
character is returned in the A-register. If the BREAK key is
active, a RST 28 with a system request code of 01 is
executed. The RST instruction results in a JUMP to the

16

DOS Exit 400C. On non-disk Systems the Exit returns, on
disk systems control is passed to SYS0 where the request
code will be inspected and ignored, because system request
codes must have bit 8 on. After inspection of the code,
control is returned to the caller of 002B. Characters
detected at 002B are not displayed. Uses DE, status, and A
register.

;
; SCAN KEYBOARD AND TEST FOR BREAK OR ASTERISK
;

PUSH DE ; SAVE DE
PUSH IY ; SAVE IY
CALL 2BH ; TEST FOR ANY KEY ACTIVE
DEC A ; KEY ACTIVE, WAS IT A BREAK
JR M,NO ; GO IF NO KEY HIT
JR Z,BRK ; ZERO IF BREAK KEY ACTIVE
INC A ; <A> BACK TO ORIGINAL VALUE
CP 2AH ; NO, TEST FOR * KEY ACTIVE
JR Z,AST ; ZERO IF *
.
.
.

CALL 0049 Wait For Keyboard Input

Returns as soon as any key on keyboard is pressed. ASCII
value for character entered is returned in A- register. Uses
A, status and DE registers.

;
; WAIT FOR NEXT CHAR FROM KEYBOARD AND TEST FOR ALPHA
;

PUSH DE ; SAVE DE
PUSH IY ; SAVE IY
CALL 49H ; WAIT TILL NEXT CHAR ENTERED
CP 41H ; TEST FOR LOWER THAN "A"
JR NC,ALPHA ; JMP IF HIGHER THAN NUMERIC
.
.

CALL 05D9 Wait For Next Line

Accepts keyboard input and stores each character in a
buffer supplied by caller. Input continues until either a
carriage return or a BREAK is typed, or until the buffer is
full. All edit control codes are recognized, e.g. TAB,
BACKSPACE, etc. The calling sequence is: On exit the
registers contain:

;
; GET NEXT LINE FROM KEYBOARD. EXIT IF BREAK STRUCK.
; LINE CANNOT EXCEED 25 CHARACTERS
;
SIZE EQU 25 ; MAX LINE SIZE ALLOWED

LD HL,BUFF ; BUFFER ADDRESS
LD B,SIZE ; BUFFER SIZE
CALL 5D9H ; READ NEXT LINE FROM KEYBOARD
JR C,BREAK ; JMP IF BREAK TYPED
.
.

BUFF DEFS SIZE ; LINE BUFFER
.
.

HL Buffer address
B Number of characters transmitted excluding last.
C Original buffer size
A Last character received if a carriage return or

BREAK is typed.
Carry Set if break key was terminator, reset otherwise.

If the buffer is full, the A register will contain the buffer
size.

Video Output

Video I/O is another example of memory mapped I/O. It
uses addresses 3C00 thru 3FFF where 3C00 represents the
upper left hand corner of the video screen and 3FFF
represents the lower right hand corner of the screen.

Screen control codes such as TAB, CURSON ON/OFF,
BACKSPACE and such are processed by the video driver
routine. The video device itself does not recognize any
control codes. Codes recognized by the driver and their
respective actions are:

Code (hex.) Action

08 backspace and erase character.
0E turn on cursor.
0F turn off cursor.
17 select line size of 32 char/line.
18 backspace one character (left arrow)
19 skip forward one character (right arrow)
1A skip down one line (down arrow).
1B skip up one line (up arrow).
1C home cursor. select 64 char/line.
1D position cursor to Start of current line
1E erase from cursor to end of line
1F erase from Cursor to end of frame

Character and line size (32/64 characters per line) is
selected by addressing the video controller on port FF, and
sending it a function byte specifying character size. The
format of that byte is:

 7 6 5 4 3 2 1 0 = bit

 x x x x x x x x

 used for cassette
 not used operations

 character size select

 1 = 32 char/line
 0 = 64 char/line

CALL 0033 Video Display

Displays the character in the A-register on the video.
Control codes are permitted. All registers are used.

;
; DISPLAY MESSAGE ON VIDEO
;

LD HL,LIST ; MESSAGE ADDRESS
LOOP LD A,(HL) ; GET NEXT CHARACTER

OR A ; TEST FOR END OF MESSAGE
JR Z,DONE ; JMP IF END OF MESSAGE (DONE)
PUSH HL ; NT END, PRESERVE HL
CALL 33H ; AND PRINT CHARACTER
POP HL ; RESTORE HL
INC HL ; BUMP TO NEXT CHARACTER
JR LOOP ; LOOP TILL ALL PRINTED

DONE .
.
.

LIST DEFM 'THIS IS A TEST'
DEFB 0DH ; CARRIAGE RETURN
DEFB 0 ; END OF MESSAGE INDICATOR

17

CALL 01C9 Clear Screen

Clears the screen, selects 64 characters and homes the
cursor. All registers are used.

;
; CLEAR SCREEN, HOME CURSOR, SELECT 32 CHAR/LINE
; SKIP 4 LINES
;

CALL 01C9H ; CLEAR SCREEN
LD A,17H ; SELECT 32 CHAR/LINE
CALL 0033H ; SEND CHAR SIZE TO VIDEO
LD B,4 ; NO. OF LINES TO SKIP
LD A,1AH ; CODE TO SKIP ONE LINE

 LOOP PUSH BC ; SAVE BC
CALL 33H ; SKIP I LINE
POP BC ; GET COUNT
DJNZ LOOP ; LOOP TILL FOUR LINES DONE

CALL 022C Blink Asterisk

Alternately displays and clears an asterisk in the upper right
hand corner. Uses all registers.

;
; BLINK ASTERISK THREE TIMES
;

LD B,3 ; NO. OF TIMES TO BLINK
LOOP PUSH BC ; SAVE COUNT

CALL 022CH ; BLINK ASTERISK ONCE
POP BC ; GET COUNT
DJNZ LOOP ; COUNT 1 BLINK

DONE .
.

Printer Output

The printer is another example of a memory mapped
device. Its address is 37E8H. Storing an ASCII character
at that address sends it to the printer. Loading from that
address returns the printer status. The status is returned as a
zero status if the printer is available and a non-zero status if
the printer is busy.

CALL 003B Print Character

The character contained in the C-register is sent to the
printer. A line count is maintained by the driver in the
DCB. When a full page has been printed (66 lines), the line
count is reset and the status register returned to the caller is
set to zero. Control codes recognized by the printer driver
are:

CODE ACTION

00 Returns the printer Status in the upper two bits of
the A-register and sets the status as zero if not
busy, and non-zero if busy.

0B Unconditionally skips to the top of the next page.

0C Resets the line count (DCB 4) and compares its
previous value to the lines per page (DCB 3)
value. If the line count was zero, no action is
taken. If the line count was non-zero then a Skip
to the top form is performed.

0D Line terminator. Causes line count to be inc-
remented and tested for full page. Usually causes
the printer to begin printing.

;
; WRITE MESSAGE ON PRINTER. IF NOT READY WITHIN 1.5 SECONDS
; DISPLAY ERROR MESSAGE ON VIDEO
;

LD HL,LIST ; ADDR OF LINE TO PRINT
START LD B,5 ; PREPARE TO TEST FOR PRINTER

; READY
LOAD LD DE,10H ; LOAD DELAY COUNTERS
TST CALL 05D1H ; GET PRINTER STATUS

JR Z,RDY ; JP IF PRINTER READY
DEC DE ; NOT READY, DECREMENT

; COUNTERS AND
LD A,D ; TEST IF 1.5 SEC HAS ELAPSED

OR E ; FIRST DE MUST = 0
JR NZ,TST ; JMP IF DE NOT 0
DJNZ LOAD ; LOOP TILL 1.5 SEC PASSED
JP NTRDY ; GO DISPLAY 'PRINTER NOT

; READY
RDY POP HL ; RESTORE ADDR OF PRINT LINE

LD A,(HL) ; GET NEXT CHAR TO PRINT
OR A ; TEST FOR END OF LINE
JR Z,DONE ; JMP IF END OF LINE
LD C,A ; PUT CHAR IN PROPER REGISTER

CALL 58DH ; PRINT CHARACTER
INC HL ; BUMP TO NEXT CHAR
JR START ; LOOP TILL ALL CHARS PRINTED

NTRDY LD HL,NTRDM ; HL = ADDR OF NOT READY NSG

CALL VIDEO* ; PRINT MEG
DONE . ; LINE PRINTED ON PRINTER

.

.
LIST DEFM 'THIS IS A TST

DEFB ODH ; CR MAY BE REQUIRED TO START
; PRINTER

DEFB 0 ; END OF MSG FLAG

NTRDM DEFM 'PRINTER NOT READY'
DEFB 0 ; TERMINATE PRINTED MSG
.
.

CALL 05D1 Get Printer Status
Returns the status of the line printer in the status register as
zero if the printer is ready, and non-zero if not ready.

Other status bits are returned as shown:

 7 6 5 4 3 2 1 0 = bit

 x x x x 0 0 0 0

 NOT USED

 0 - PRINTER NOT SELECTED
 1 - PRINTER SELECTED

 0 - NOT READY
 1 - READY

 0 - PAPER
 1 - OUT OF PAPER

 0 - NOT BUSY
 1 - BUSY

The out of paper and busy bits are optional on some printers.

;
; MONITOR PRINTER STATUS ACCORDING TO STATUS BITS ABOVE
; AND PRINT APPROPRIATE ERROR MESSAGE
;

LD BC,10 ; TIMER COUNT FOR PRINTER
START CALL 05D1H ; GET PRINTER STATUS

JR Z,OK ; JUMP IF READY
BIT 7,A ; IS IT STILL PRINTING?
JR Z,TIME ; YES IF NZ. GO TIME IT
BIT 4,A ; NOT PRINTING. IS IT SELECTED
JR Z,NS ; ZERO IF NOT SELECTED

; WE HAVE A HARDWARE PROBLEM
BIT 5,A ; UNIT IS SELECTED AND NOT BUSY
JR Z,NR ; ZERO IF NOT READY

18

;
; UNIT IS SELECTED, READY, AND NOT BUSY. ASSUME OUT OF PAPER
;
OP LD HL,OPM ; DISPLAY OUT OF PAPER MSG

.

.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
NR BIT 6,A ; UNIT IS NOT READY, TEST FOR OUT

JR NZ,OP ; OF PAPER ALSO. JMP IF OUT OF PAPER

LD HL,NRM ; DISPLAY NOT READY MSG
.
.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
NB LD HL,NSM ; GET DISPLAY NOT SELECTED MSG

.

.
JP WAIT ; GO WAIT FOR OPERATOR REPLY

; AND RETRY OR ABORT
TIME POP BC ; GET TIME COUNTER

DEC BC ; COUNT 1 LOOP
PUSH BC ; SAVE NEW VALUE
LD A,B ; IF ITS GONE TO ZERO
OR C ; WE HAVE TIMED OUT
JR NZ,START ; LOOP TILL OP FINISHED OR TIME-OUT

LD HL,TOM ; DISPLAY TIMEOUT MSG
.
.
JP WAIT ; GET OPERATOR REPLY AND RETRY

; OR ABORT
.

Cassette I/O

Cassette I/O is not memory mapped. Cassettes are
addressed via port FF after selecting the proper unit, and
I/O is done a bit at a time whereas all other devices do I/O
on a byte basis (except for the RS-232-C).

Because of the bit-by-bit transfer of data, timing is
extremely critical. When any of the following calls are
used, the interrupt system should be disabled to guarantee
that no interruptions will occur and therefore disturb the
critical timing of the output.

CALL 0212 Turn On Motor

Selects unit specified in A-register and starts motor. Units
are numbered from one. All registers are used.

LD A,1 ; CODE TO SELECT CASSETTE 1
CALL 0212H ; SELECT UNIT 1, TURN ON MOTOR
.
.
.

CALL 0284 Write Leader

Writes a Level II leader on currently selected unit. The
leader consists of 256 (decimal) binary zeros followed by a
hex A5. Uses the B and A registers.

LD A,1 ; CODE TO SELECT UNIT I
CALL 212H ; SELECT UNIT, TURN ON MOTOR
CALL 284H ; WRITE HEADER
.
.
.

CALL 0296 Read Leader

Reads the currently selected unit until an end of leader (A5)
is found. An asterisk is displayed in the upper right hand
corner of the video display when the end is found. Uses the
A-register.

LD A,1 ; CODE FOR UNIT 1
CALL 0212H ; SELECT UNIT 1, TURN ON MOTOR
CALL 0296H ; READ HEADER. RTN WHEN A5 ENCOUNTERED
.
.

CALL 0235 Read One Byte

Reads one byte from the currently selected unit. The byte
read is returned in the A-register. All other registers are
preserved.

LD A,1 ; UNIT TO SELECT
CALL 0212H ; SELECT UNIT TURN ON MOTOR
CALL 0296H ; SKIP OVER HEADER
CALL 0235H ; READ FOLLOWING BYTE
CP 41H ; TEST FOR OUR FILE NAME (A)
JR Z,YES ; JMP IF FILE A
.
.
.

CALL 0264 Write One Byte

Writes the byte in the A-register to the currently selected
unit. Preserves all register.

LD A,1 ; UNIT NO. MASK.
CALL 0212H ; SELECT UNIT, START MOTOR
CALL 0284H ; WRITE HEADER (256 ZEROS AND A5)
LD A,41H ; WRITE FILE NAME (OURS IS A)
CALL 0264H ; WRITE A AFTER HEADER
.
.
.

19

Conversion Routines

These entry points are used for converting binary values
from one data type or mode to another, such as integer to
floating point, and for conversions between ASCII and
binary representation. These conversion routines assume
the value to be converted is in WRA1 and that the mode
flag (40AF) reflects the current data type. The result will
be left in WRA1 and the mode flag will be updated.

Data Type Conversions

CALL 0A7F Floating Point Integer

The contents of WRA1 are converted from single or double
precision to integer. No rounding is performed. All registers
are used.

;
; CONVERT SINGLE PRECISION VALUE TO INTEGER AND MOVE THE RESULT
; TO IVAL
;

LD HL,4121H ; ADDR OF LSB IN WRA1
LD DE,VALUE ; ADDR OF LSB OF SP NO.
LD BC,4 ; NO OF BYTES TO MOVE
LDIR ; MOVE VALUE TO WRAS
LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
CALL 0A7FH ; CONVERT SP VALVE TO INTEGER
LD A,(412lH) ; LSB OF INTEGER EQUIVALENT
LD (IVAL),A ; SAVE IN INTEGER LOCATION
LD A,(4122H) ; MSB OF INTEGER EQUIVALENT
LD (IVAL+1),A ; SAVE IN INTEGER LOCATION
.
.
.

VALUE DEFB 0EH ; LSB OF 502.778 (SP)
DEFB B6H ; NLSB
DEFB 00H ; MSB
DEFB 88H ; EXPONENT

IVAL DEFB 0 ; WILL HOLD INTEGER EQUIVALENT OF
DEFB 0 ; SP 502.778
.
.

CALL 0AB1 Integer To Single

The contents of WRA1 are converted from integer or
double precision to single precision. All registers are used.

;
; CONVERT INTEGER VALUE TO SINGLE PRECISION AND MOVE TO
; LOCAL AREA
;

LD A,59H
LD (4121H),A ; LSB OF INTEGER 26457 (10)
LD A,67H
LD (4122H),A ; MEN OF INTEGER 26457 (10)
LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
CALL 0ADBH ; CONVERT INTEGER TO SP
LD HL,VALUE ; ADDR. OF AREA FOR SP EQUIVALENT
CALL O9CBH ; MOVE SP VALUE FROM WRA1 TO VALUE
.
.
.

VALUE DEFS 4 ; WILL HOLD 26457 IN SP FORMAT
.
.

CALL 0ADB Integer To Double

Contents of WRA1 are converted from integer or single
precision to double precision. All registers are used.

;
;
;

LD A,59H
LD (4121H),A ; LSB OF 26457 (10)
LD A,67H
LD (4122H),A ; MSB OF 26457 (10)
LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
CALL 0ADBH ; CONVERT INTEGER TO DP
LD DE,VALUE ; NOW, MOVE DP VALUE
LD HL,411DH ; FROM WRA1 TO LOCAL AREA
LD BC,B ; NO. OF BYTES TO MOVE
LDIR ; MOVE VALUE
.
.
.

VALUE DEFS 8 ; HOLDS OP EQUIVALENT OF 26457
.
.
.

ASCII To Numeric Representation

The following entry points are used to convert between
binary and ASCII. When converting from ASCII to binary
the HL register pair is assumed to contain the address of the
ASCII string. The result will be left in WRA1 or the DE
register pair and the mode flag will be updated accordingly.

CALL 1E5A ASCII To Integer

Converts the ASCII string pointed to by HL to its integer
equivalent. The result is left in the DE register pair.
Conversion will cease when the first non-numeric character
is found.

;
;
;

LD HL,AVAL ; HL = ADDR. OF ASCII NUMBER
CALL 1E5AH ; CONVERT IT TO BINARY
LD (BVAL),DE ; SAVE BINARY VALUE
.
.
.

AVAL DEFM '26457' ; ASCII VALUE 26457
DEFB 0 ; NON-NUMERIC STOP BYTE

BVAL DEFW 2 ; HOLDS BINARY VALUE 26457
.
.

CALL 0E6C ASCII To Binary

Converts the ASCII string pointed to by HL to binary. If
the value is less than 2**16 and does not contain a decimal
point or an E or D descriptor (exponent), the string will be
converted to its integer equivalent. If the string contains a
decimal point or an E, or D descriptor or if it exceeds 2**16
it will be converted to single or double precision. The
binary value will be left in WRA1 and the mode flag will be
to the proper value.

20

;
;
;

LD HL,AVAL ; ASCII NUMBER
CALL 0E6CH ; CONVERT ASCII TO BINARY
.
.
.

AVAL DEFM '26457' ; ASCII VALUE TO BE CONVERTED
DEFB 0 ; NON-NUMERIC STOP
.
.

CALL 0E65 ASCII To Double

Converts the ASCII string pointed to by HL to its double
precision equivalent. All registers are used. The result is
left in WRA1.

;
;
;
 LD HL,AVAL ; ADDR OF ASCII VALUE TO CONVERT

CALL 0E65H ; CONVERT VALUE TO DP
LD DE,BVAL ; THEN MOVE VALUE FROM
LD HL,411DH ; WRA1 TO A LOCAL AREA
LD BC,8 ; NO. OF BYTES TO MOVE
LDIR ; MOVE DP VALUE TO LOCAL AREA
.
.
.

AVAL DEFM '26457' ; ASCII VALUE TO BE CONVERTED
DEFB 0 ; NONNUMERIC STOP BYTE

BVAL DEFS 8 ; LOCAL AREA THAT HOLDS BINARY
; EQUIVALENT

.

.

Binary To ASCII Representation

The next set of entry points are used to convert from binary
to ASCII.

CALL 0FAF HL To ASCII

Converts the value in the HL register pair (assumed to be an
integer) to ASCII and displays it at the current cursor
position on the video. All registers are used.

;
;
;

LD HL,64B8H ; HL = 25784 (10)
CALL 0FAFH ; CONVERT TO ASCII AND DISPLAY
.
.

CALL 132F Integer To ASCII

Converts the integer in WRA1 to ASCII and stores the
ASCII string in the buffer pointed to by the HL register
pair. On entry, both the B and C registers should contain a
5 to avoid any commas or decimal points in the ASCII
string. All registers are preserved.

;
;
;

LD HL,500
LD (4121H),HL ; 500 (10) TO WRA1
LD BC,505H ; SUPPRESS COMMAS OR DEC. PTS.
LD HL,BUFF ; BUFFER ADDR FOR ASCII STRING
CALL 132FH ; CONVERT VALUE IN WRA1 TO ASCII

; AND STORE IN BUFF.
.
.
.

BUFF DEFS 5 ; BUFFER FOR ASCII VALUE
.
.

CALL 0FBE Floating to ASCII

Converts the single or double precision number in WRA1
to its ASCII equivalent. The ASCII value is stored at the
buffer pointed to by the HL register pair. As the value is
converted from binary to ASCII, it is formatted as it
would be if a PRINT USING statement had been
invoked. The format modes that can be specified are
selected by loading the following values into the A, B ,and
C registers.

REGISTER A = 0 ... Do not edit. Strictly binary to ASCII.
REGISTER A = X ... Where x is interpreted as:

7 6 5 4 3 2 1 0 = BIT
x x x x x x x x

 EXPONENTIAL NOTATION

 RESERVED

 SIGN FOLLOWS VALUE

 INCLUDE SIGN

 PRINT LEADING $ SIGN

 INCLUDE LEADING ASTERISKS

 PRINT COMMAS EVERY 3RD DIGIT

 0 - DO NOT PERFORM EDIT FUNCTIONS
 1 - EDIT VALUE ACCORDING TO OPTIONS

REGISTER B = The number of digits to the left of the
 decimal point.
REGISTER C = The number of digits after the decimal point

;
;
;

LD HL,AVAL1 ; ASCII VALUE TO CONVERT
CALL 0E6CH ; CONVERT ASCII TO BINARY
LD HL,AVAL2 ; BUFFER ADDR. FOR CONVERTED VALUE
LD A,0 ; SIGNAL NO EDITING
CALL 0FBEH ; CONVERT SP VALUE BACK TO ASCII
.
.
.

AVAL1 DEFM '1103.25' ; ORIGINAL ASCII VALUE
DEFB 0 ; NON-NUMERIC STOP BYTE

AVAL2 DEFS 7 ; WILL HOLD RECONVERTED VALUE
.
.

21

Arithmetic Routines

These subroutines perform arithmetic operations between
two operands of the same type. They assume that the
operands are loaded into the correct hardware or Working
Register Area, and that the data type or mode is set to the
correct value. Some of these routines may require the
Divide Support Routine (See Chapter 1 for details.)

Integer Routines

The following routines perform arithmetic operations
between integer values in the DE and HL register pairs.
The original contents of DE is always preserved and the
result of the operations is always left in the HL register pair.

CALL 0BD2 Integer Add

Adds the integer value in DE to the integer in HL. The sum
is left in HL and the original contents of DE are preserved.
If overflow occurs (sum exceeds 2**15), both values are
converted to single precision and then added. The result
would be left in WRA1 and the mode flag would be
updated.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; LOAD FIRST VALUE
LD DE,(VAL2) ; LOAD SECOND VALUE
CALL 0BD2H ; ADD SO THAT HL = HL + DE
LD A,(40AFH) ; TEST FOR OVERFLOW
CP 2 ; IF TYPE IS NOT INTEGER
JR NZ,... ; NZ IF SUM IS SINGLE PRECISION
. ; ELSE SUM IS INTEGER
.
.

VAL1 DEFW 25
VAL2 DEFW 20

.

.

CALL 0BC7 Integer Subtraction

Subtracts the value in DE from the value in HL. The
difference is left in the HL register pair. DE is preserved.
In the event of underflow, both values are converted to
single precision and the subtraction is repeated. The result
is left in WRA1 and the mode flag is updated accordingly.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFE),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; VALUE 1
LD DE,(VAL2) ; VALUE 2
CALL 0BC7H ; SUBTRACT DE FROM HL
LD A,(40AFH) ; GET MODE FLAG
CP 2 ; TEST FOR UNDERFLOW
JR NZ,... ; NZ IF UNDERFLOW
.
.
.

VAL1 DEFW 25
VAL2 DEFW 20

.

.

CALL 0BF2 Integer Multiplication

Multiplies HL by DE. The product is left in HL and DE is
preserved. If overflow occurs, both values are converted to
single precision and the operation is restarted. The product
would be left in WRA1.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD HL,(VAL1) ; LOAD FIRST VALUE
LD DE,(VAL2) ; LOAD SECOND VALUE
CALL 0BF2H ; HL = HL * DE
LD A,(40AFH) ; GET MODE FLAG
CP 2 ; TEST FOR OVERFLOW
JR NZ,... ; NO IF VALUE HAS OVERFLOWED
.
.
.

VAL1 DEFW 25
VAL2 DEFW 20

.

.

CALL 2490 Integer Division

Divides DE by HL. Both values are converted to single
precision before the division is started. The quotient is left
in WRA1; the mode flag is updated. The orginal contents
of the DE and HL register sets are lost.

LD DE,(VAL1) ; LOAD VALUE 1
LD HL,(VAL2) ; LOAD VALUE 2
CALL 2490H ; DIVIDE DE BY HL. QUOTIENT TO WRAl
.
.
.

VAL1 DEFW 50
VAL2 DEFW 2

CALL 0A39 Integer Comparison

Algebraically compares two integer values in DE and HL.
The contents of DE and HL are left intact. The result of the
comparison is left in the A register and status register as:

OPERATION A REGISTER
--------- ----------
DE > HL A = -1
DE < HL A = +1
DE = HL A = 0

;
;
;

LD DE,(VAL1) ; DE AND HL ARE VALUES
LD HL,(VAL2) ; TO BE COMPARED
CALL 0A39H ; COMPARE DE TO HL
JR Z,... ; Z IF DE = HL
JP P,... ; POSITIVE IF DE < HL
.
.

Single Precision Routines

The next set of entry points are used for single precision
operations. These routines expect one argument in the
BC/DE registers and the other argument in WRA1.

22

CALL 0716 Single Precision Add

Add the single precision value in (BC/DE) to the single
precision value in WRA1. The sum is left in WRA1

LD HL,VAL1 ; ADDR. OF ONE SP VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR. OF 2ND SP VALUE
CALL 9C2H ; LOAD IT INTO BC/DE REGISTER
CALL 716H ; ADD VALUE 1 TO VALUE 2
. ; SUM IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 0713 Single Precision Subtract

Subtracts the single precision value in (BC/DE) from the
single precision value in WRA1. The difference is left in
WRA1.

LD HL,VAL1 ; ADDR OF ONE SP. VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND SP VALUE
CALL 9C2H ; LOAD IT INTO BC/DE
CALL 713H ; SUBTRACT DE FROM WRA1
. ; DIFFERENCE LEFT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 0847 Single Precision Multiply

Multiplies the current value in WRA1 by the value in
(BC/DE). the product is left in WRA1.

LD HL,VAL1 ; ADDR OF ONE SP VALUE
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND SP VALUE
CALL 9C2H ; LOAD 2ND VALUE INTO BC/DE
CALL 547H ; MULTIPLY
. ; PRODUCT LEFT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

CALL 2490 Single Precision Divide

Divides the single precision value in (BC/DE) by the single
precision value in WRA1. The quotient is left in WRA1.

LD HL,VAL1 ; ADDR OF DIVISOR
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR. OF DIVIDEND
CALL 9C2H ; LOAD BC/DE WITH DIVIDEND
CALL 2490H ; DIVIDE BC/DE BY WRA1
. ; QUOTIENT IN WRA1
.
.

VAL1 DEFS 4 ; HOLDS DIVISOR
VAL2 DEFS 4 HOLDS DIVIDEND

.

.

CALL 0A0C Single Precision
Comparison

Algebraically compares the single precision value in
(BC/DE) to the single precision value WRA1. The result of
the comparison is returned in the A and status as:

 OPERATION A REGISTER

 (BC/DE) > WRA1 A = -1
 (BC/DE) < WRA1 A = +1
 (BC/DE) = WRA1 A = 0

;
;
;

LD HL,VAL1 ; ADDR OF ONE VALUE TO BE COMPARED
CALL 9B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF 2ND VALUE TO COMPARE
CALL 9C2H ; LOAD 2ND VALUE INTO BC/DE
CALL 0A0CH ; COMPARE BC/DE TO WRA1
JR Z,... ; ZERO IF (BC/DE) = WRA1
JP P,... ; POSITIVE IF (BC/DE) < WRA1
.
.
.

VAL1 DEFS 4 ; HOLDS A SP VALUE
VAL2 DEFS 4 ; HOLDS A SP VALUE

.

.

Double Precision Routines

The next set of routines perform operations between two
double precision operands. One operand is assumed to be
in WRA1 while the other is assumed to be in WRA2
(4127-412E). The result is always left in WRA1.

CALL 0C77 Double Precision Add

Adds the double precision value in WRA2 to the value in
WRA1. Sum is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0C77H ; ADD WRA2 TO WRA1. SUM IN WRA1
.
.
.

VAL1 DEFS 8 ; HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALUE

.

.

23

CALL 0C70 Double Precision Subtraction

Subtracts the double precision value in WRA2 from the
value in WRA1. The difference is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0C70H ; SUBTRACT WRA2 FROM WRA1
. ; DIFFERENCE IN WRA1
.
.

VAL1 DEFS 8 ; HOLDS A DP VALUE
VAL2 DEFS 8 ; HOLDS A DP VALUE

.

.

CALL 0DA1 Double Precision Multiply

Multiplies the double precision value in WRA1 by the
value in WRA2. The product is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0DA1H ; MULTIPLY WRA1 BY WRA2
. ; PRODUCT IN WRA1
.
.

VAL1 DEFS 8 ; HOLDS A OF VALUE
VAL2 DEFS 8 ; HOLDS A OF VALUE

.

.

CALL 0DE5 Double Precision Divide

Divides the double precision value in WRA1 by the value
in WRA2. The quotient is left in WRA1.

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST DP VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0DE5H ; DIVIDE WRA1 BY WRA2
. ; QUOTIENT LEFT IN WRA1
.
.

VAL1 DEFS 8 HOLDS A OF VALUE
VAL2 DEFS 8 HOLDS A OF VALUE

.

.

CALL 0A78 Double Precision Compare

Compares the double precision value in WRA1 to the value
in WRA2. Both register areas are left intact. The result of
the comparison is left in the A and status registers as:

 OPERATION A REGISTER
 ————————————————————————————

 WRA1 > WRA2 A = -1
 WRA1 < WRA2 A = +1
 WRA1 = WRA2 A = 0
;
;
;

LD A,8 ; TYPE CODE FOR DP
LD (40AFH),A ; SET TYPE FLAG TO DP
LD DE,VAL1 ; ADDR OF 1ST DP VALUE
LD HL,411DH ; ADDR OF WRA1
CALL 9D3H ; MOVE 1ST VALUE TO WRA1
LD DE,VAL2 ; ADDR OF 2ND DP VALUE
LD HL,4127H ; ADDR OF WRA2
CALL 9D3H ; MOVE 2ND VALUE TO WRA2
CALL 0A78H ; COMPARE WRA1 TO WRA2
JR Z,... ; ZERO IF THEY ARE EQUAL
JP P,... ; POSITIVE IF WRA1 < WRA2
.
.

Math Routines

All of the following subroutines assume that location 40AF
contains a code indicating the data type or mode of the
variable e.g., integer, single precision, or double precision,
and that the variable itself is in Working Register Area 1
(WRA1). Also, the floating point Division Support Routine
must be loaded at 4080.

CALL 0977 Absolute Value
ABS (N)

Converts the value in Working Register Area 1 (WRA1) to
its positive equivalent. The result is left in WRA1. If a
negative integer greater than 2**15 is encountered, it is
converted to a single precision value. The data type or
mode flag (40AF) will be updated to reflect any change in
mode.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,VAL1 ; ADDR OF SP VALUE TO ABS
CALL 09B1H ; MOVE SP VALUE TO WRA1
CALL 0977H ; FIND ABS VALUE
.
.
.

VAL1 DEFB 58H ; SP 81.6022(10)
DEFB 34H
DEFB 23H
DEFB 87H
.
.

CALL 0B37 Return Integer
INT (N)

Returns the integer portion of a floating point number. If
the value is positive, the integer portion is returned. If the
value is negative with a fractional part, it is rounded up
before truncation. The integer portion is left in WRA1.
The mode flag is updated.

24

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SINGLE PREC.
LD HL,VAL1 ; ADDR OF SP VALUE
CALL 09B1H ; MOVE SP VALUE TO WRA1
CALL 0B37H ; ISOLATE INTEGER PART OF SP VALUE
LD DE,4121H ; ADDR OF WRA1 (INTEGER PART OF SP

VALUE
LD HL,VAL2 ; LOCAL ADDR FOR INTEGERIZED VALUE

 CALL 09D3H ; MOVE INTEGERIZED SP VALUE TO LOCAL
AREA

.

.

.
VAL1 DEFB 0E0H ; SP -41.3418

DEFB 05DH
DEFB 0A5H
DEFB 086H

VAL2 DEFS 4 ; HOLDS INTEGER PORTION OF
; -41.3418

.

.

.

CALL 15BD Arctangent
ATN (N)

Returns the angle in radians, for the floating point tangent
value in WRA1. The angle will be left as a single precision
value in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,TAN ; ADDR OF VALUE FOR TANGENT
CALL 09B1H ; MOVE TAN TO WRA1
CALL 15BDH ; FIND ANGLE IN RADS
LD HL,ANGL ; ADDR OF LOCAL STORAGE FOR ANGLE
LD DE,4121H ; ADDR OF WRA1
CALL 09D3H ; MOVE ANGLE FROM WRA1 TO LOCAL AREA
.
.
.

TAN DEFB 9AH ; TANGENT OF 30 DEG.
DEFB 0C4H
DEFB 13H
DEFB 80H ; EXPONENT

ANGL DEFS 4 ; WILL HOLD 30 DEG. IN RADS (.5235)

CALL 1541 Cosine
COS (N)

Computes the cosine for an angle given in radians. The
angle must be a floating point value; the cosine will be
returned in WRA1 as a floating point value.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR OF ANGLE VALUE
CALL 09B1H ; MOVE ANGLE TO WRA1
CALL 1541H ; COMPUTE COSINE
LD HL,CANGL ; LOCAL ADDR FOR COSINE
LD DE,4121H ; ADDR OF WRA1
CALL 09D3H ; MOVE COSINE FROM WRA1 TO LOCAL AREA

.

.

.
ANGL DEFB 18H ; 30 DEG. IN RADS. (.5235)

DEFB 04H
DEFB 06H
DEFB 80H ; EXPONENT

CANGL DEFS 4 ; WILL HOLD COSINE OF 30 DEG.
.
.

CALL 1439 Raise Natural Base
EXP (N)

Raises E (natural base) to the value in WRA1 which must
be a single precision value. The result will be returned in
WRA1 as a single precision number.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,EXP ; ADDR OF EXPONENT
CALL 09B1H ; MOVE EXPONENT TO WRA1
CALL 1439H ; FIND E ** 1.5708
LD DE,4121H ; ADDR OF WRA1
LD HL,POW ; ADDR OF LOCAL STORAGE
CALL 09D3H ; MOVE POWER TO LOCAL AREA
.
.
.

EXP DEFB 0DBH ; SP 1.5708(10)
DEFB 00FH
DEFB 049H
DEFB 081H

POW DEFS 4 ; HOLDS E**1.5708
.
.
.

CALL 13F2 Raise X to the Y Power
X**Y

Raises the single precision value which has been saved on
the STACK to the power specified in WRA1. The result
will be returned in WRA1.

;
; COMPUTE 16**2
;

LD BC,RETADD ; RTN ADDR FOLLOWING
PUSH BC ; RAISING X TO Y
LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP FOR X
LD HL,X ; ADDR OF VAL TO BE RAISED
CALL 09B1H ; MOVE VAL TO WRA1
CALL 09A4H ; WRA1 TO STACK
LD HL,Y ; ADDR OF POWER
CALL 0931H ; MOVE POWER TO WRA1
JP 13F2H ; WRA1 = COMPUTE X**Y

RA . ; RTN TO RA WHEN DONE
.
.

X DEFW 0 ; SP FOR 16 (10)
DEFW 85H

Y DEFW 0 ; SP FOR 2 (10)
DEFW 82H
.
.

25

CALL 0809 Natural Log
LOG (N)

Computes the natural log (base E) of the single precision
value in WRA1. The result is returned as a single precision
value in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,POW ; ADDR OF POWER
CALL 09B1H ; MOVE POWER TO WRA1
CALL 0809H ; FIND NAT.LOG. OF POWER
LD DE,4121H ; ADDR OF WRA1
LD HL,NLOG ; ADDR OF LOCAL STORAGE AREA
CALL 09D3H ; MOVE LOG FROM WRA1 TO LOCAL AREA
.
.
.

POW DEFB 00 ; FLOATING POINT 3 (LSB)
DEFB 00
DEFB 04H
DEFB 82HH ; EXPONENT FOR 3.0

NLOG DEFS 4 ; WILL HOLD NAT. LOG OF 3
.
.
.

CALL 0B26 Floating To Integer
FIX (N)

Unconditionally truncates the fractional part of a floating
point number in WRA1. The result is stored in WRA1 and
the type flag is set to integer.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,FLPT ; ADDR OF FLOATING POINT VALUE
CALL 09B1H ; MOVE FLT.PT. VALUE TO WRA1
CALL 0B26H ; TRUNCATE AND CONVERT TO INTEGER
LD HL,(4121H) ; LOAD INTEGER PORTION FROM WRA1
LD (INTG),HL ; AND STORE IN LOCAL AREA
.
.
.

FLPT DEFB 0BAH ; SP 39.7107(10)
DEFB 0D7H
DEFB 01EH
DEFB 086H

INTG DEFS 2 ; HOLDS INTEGER PORTION OF
; 39.7107

.

.

.

CALL 01D3 Reseed Random Seed
RANDOM

Reseeds the random number seed (location 40AB) with the
current contents of the refresh register.

CALL 01D3H ; RESEED RANDOM NUMBER SEED
.
.
.

CALL 14C9 Random Number
RND (N)

Generates a random number between 0 and 1, or 1 and n
depending on the parameter passed in WRA1. The random
value is returned in WRA1 as an integer with the mode flag
set. The parameter passed will determine the range of the
random number returned. A parameter of 0 will return an
interger between 0 and 1. A parameter greater than 0 will
have any fraction portion truncated and will cause a value
between 1 and the integer portion of the parameter to be
returned.

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO INTEGER
LD A,50
LD (4l21H),A ; PUT AN INTEGER 50 INTO WRA1
CALL 14C9H ; GET A RANDOM NO. BETWEEN 1 AND 50
LD HL,(4121H) ; LOAD RANDOM NO. INTO HL
LD (RVAL),HL ; AND MOVE IT TO LOCAL AREA
.
.
.

RVAL DEFW 0 ; HOLDS RANDOM NUMBER (INTEGER)
.
.
.

CALL 1547 Sine
SIN (N)

Returns the sine as a single precision value in WRA1. The
sine must be given in radians in WRA1.

LD A,4 ; TYPE CODE FOR INTEGER
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR. OF ANGLE IN RADIANS
CALL 09B1H ; MOVE ANGLE TO WRA1
CALL 1547H ; COMPUTE SINE OF ANGLE
LD DE,4121H ; ADDR OF SINE IN WRA1
LD HL,SANGL ; ADDR OF LOCAL AREA FOR SIN
CALL 09D3H ; MOVE SINE TO LOCAL AREA
.
.
.

ANGL DEFB 18H ; 30 DEGS. IN RADS. (.5235)
DEFB 04H
DEFB 06H
DEFB 80H ; EXPONENT

SANGL DEFS 4 ; WILL HOLD SINE OF 30 DEG.
.
.
.

CALL 13E7 Square Root
SQR (N)

Computes the square root of any value in WRA1. The root
is left in WRA1 as a single precision value.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,VAL1 ; VALUE TO ROOT OF
CALL 09B1H ; MUST BE IN WRA1
CALL 13E7H ; TAKE ROOT OF VALUE
LD DE,4121H ; ADDR OF ROOT IN WRA1
LD HL,ROOT ; ADDR OF LOCAL AREA
CALL 09D3H ; MOVE ROOT TO LOCAL AREA
.
.
.

VAL1 DEFB 00H ; SP 4
DEFB 00H
DEFB 00H
DEFB 83H ; EXPONENT OF FLOATING POINT 4

ROOT DEFS 4 ; HOLDS ROOT OF 4
.
.
.

26

CALL 15A8 Tangent
TAN (N)

Computes the tangent of an angle in radians. The angle
must be specified as a single precision value in WRA1.
The tangent will be left in WRA1.

LD A,4 ; TYPE CODE FOR SP
LD (40AFH),A ; SET TYPE TO SP
LD HL,ANGL ; ADDR OF ANGLE IN RADIANS
CALL 0981H ; MOVE ANGLE TO WRA1
CALL 15A8H ; FIND TAN OF ANGLE
LD DE,4121H ; ADDR OF WRA1
LD HL,TANGL ; ADDR OF LOCAL STORAGE FOR TAN
CALL 09D3H ; WOVE TAN FROM WRA1 TO LOCAL AREA
.
.
.

ANGL DEFB 18H ; VALUE FOR 30 DEG IN RADS
DEFB 04H ; (.5235)
DEFB 06H
DEFB 80H ; EXPONENT

TANGL DEFS 4 ; WILL HOLD TANGENT OF 30 DEG.
.
.
.

Function Derivation

27

SYSTEM FUNCTIONS

System Functions are ROM entry points that can be entered
at This means that on a disk based system, for example, an
assembly language program which CALLS these entry
points could be executed immediately after IPL before
executing the BASIC utility program first.

These entry points are different from the BASIC Functions
because they do not require the Communications Region
(CR) to be initialized in order to operate correctly. A Level
II system without disks always has an initialized CR
because of its IPL processing.

Some of the routines mentioned here do use the
Communications Region, but none of them require any
particular locations to be initialized. The System Error
routine however, which may be called in the event of an
error detected by these routines, will assume some words
contain meaningful data, and will return control to the
BASIC Interpreter Input Phase.

RST 08 Compare Symbol

Compares the symbol in the input string pointed to by HL
register to the value in the location following the RST 08
call. If there is a match, control is returned to address of the
RST 08 instruction 2 with the next symbol in the A-register
and HL incremented by one. If the two characters do not
match, a syntax error message is given and control returns
to the Input Phase.

;
; TEST THE STRING POINTED TO BY HL TO SEE IF IT
; CONTAINS THE STRING 'A=B=C'.
;

RST 08 ; TEST FOR A
DEFB 41H ; HEX VALUE FOR A
RST 08 ; FOUND A, NOW TEST FOR =
DEFB 3DH ; HEX VALUE FOR =
RET 08 ; FOUND =, NOW TEST FOR B
DEFB 42H ; HEX VALUE FOR B
RST 08 ; FOUND B, TEST FOR =
DEFB 3DH ; HEX VALUE FOR =
RST 08 ; FOUND =, TEST FOR C
DEFB 43H ; HEX VALUE FOR C
. ;FOUND STRING A=B-C
.
.

RST 10 Examine Next Symbol

Loads the next character from the string pointed to by the
HL register set into the A-register and clears the CARRY
flag if it is alphabetic, or sets it if is alphanumeric. Blanks
and control codes 09 and 0B are ignored causing the
following character to be loaded and tested. The HL
register will be incremented before loading any character
therefore on the first call the HL register should contain the
string address minus one. The string must be terminated by
a byte of zeros.

;
; THE CURRENT STRING POINTED TO BY HL IS ASSUMED
; TO BE PART OF AN ASSIGNMENT STATEMENT CONTAINING
; AN OPTIONAL SIGN FOLLOWED BY A CONSTANT OR A
; VARIABLE NAME. MAKE THE NECESSARY TESTS TO DETERMINE
; IF A CONSTANT OR A VARIABLE IS USED.
;

RST 08 ; TEST FOR
DEFB 3DH ; HEX VALUE FOR =

NEXT RST 10H ; GET SYMBOL FOLLOWING =
JR NC,VAR ; NC IF VARIABLE NAME
CALL 1E5AH ; GET VALUE OF CONSTANT
JR SKIP ; JOIN COMMON CODE

VAR CP 2BH ; NOT NUMERIC, TEST FOR +,-,
; OR ALPHA

JR Z,NEXT ; SKIP + SIGNS
CP 20H ; NOT A +, TEST FOR A -
JR Z,NEXT ; SKIP - SIGNS
CALL 260DH ; ASSUME IT'S A GOOD ALPHA AND

; SEARCH FOR A VARIABLE NAME
; (SEE SECTION 2.6 FOR A
; DESCRIPTION OF 260D)

SKIP .
.
.

RST 18 Compare DE:HL

Numerically compares DE and HL. Will not work for
signed integers (except positive ones). Uses the A-register
only. The result of the comparison is returned in the status
register as:

CARRY SET - HL < DE
NO CARRY - HL > DE
NZ - UNEQUAL
Z - EQUAL

;
; THIS EXAMPLE TESTS THE MAGNITUDE OF THE VALUE
; FOLLOWING THE - IN THE STRING POINTED TO BY HL
; TO MAKE SURE IT FALLS BETWEEN 100 AND 500
;

RST 08 ; TEST FOR =
DB 3DH ; HEX VALUE FOR =
RST 10H ; FOUND =, TEST NEXT CHAR
JR NC,ERR ; NC IF NOT NUMERIC
CALL 1E5AH ; GET BINARY VALUE
LD HL,500 ; UPPER LIMIT VALUE
RST 18H ; COMPARE VALUE TO UPPER LIMIT
JR C,ERR ; CARRY IF VALUE > 500
LD HL,100 ; LOWER LIMIT VALUE
RST 18H ; COMPARE VALUE TO LOWER LIMIT
JR NC,ERR ; NO CARRY IF VALUE < 100
.
.
.

RST 20 Test Data Mode

Returns a combination of STATUS flags and unique
numeric values in the A-register according to the data mode
flag (40AF). This CALL is usually made to determine the
type of the current value in WRA1. It should be used with
caution, however since the mode flag and WRA1 can get
out of phase particularly if some of the CALLS described
here are used to load WRA1.

 TYPE STATUS A-REGISTER

02 (INTEGER) NZ/C/M/E -1
03 (STRING) Z/C/P/E 0
04 (SINGLE PREC.) NZ/C/P/O 1
08 (DOUBLE PREC.) NZ/NC/P/E 5

28

;
; TEST DATA TYPE AFTER INTEGER ADDITION TO
; DETERMINE IF OVERFLOW OCCURRED (RESULT WOULD
; BE CONVERTED TO SINGLE PRECISION
;

LD A,2 ; TYPE CODE FOR INTEGER
LD (40AFH),02 ; SET TYPE TO INTEGER
LD BC,(VAL1) ; FIRST QUANTITY
LD HL,(VAL2) ; SECOND QUANTITY
CALL 0B2DH ; DO INTEGER ADDITION
RST 20H ; TEST FOR OVERFLOW
JP M,OK ; RESULT IS INTEGER
. ; RESULT IS NOT INTEGER
. ; TEST FOR OTHER TYPES

OK LD (SUM),HL ; SAVE INTEGER RESULT
.
.
.

VAL1 DEFW 125 ; 16 BIT INTEGER VALUE
VAL2 DEFW 4235 ; 16 BIT INTEGER VALUE
SUM DEFW 0 ; HOLDS 16 BIT VALUE

RST 28 DOS Function CALL

Passes request code in A-register to DOS for processing.
Returns for non-disk system. For disk systems, the A-
register must contain a legitimate DOS function code. If
the code is positive, the CALL is ignored and control
returns to the caller. Note that the DOS routine discards the
return address stored on the stack by the RST instruction.
After processing control will be returned to the previous
address on the stack. The calling sequence is:

;
; LOAD AND EXECUTE DEBUG
;

LD A,87H ; DOS CODE FOR LOADING DEBUG
CALL DOS
. ; RETURN HERE
.

DOS RST 28H ; MAKE DOS CALL (WILL RET TO CALLER)
.
.

RST 30 Load DEBUG

This CALL loads the DEBUG program and transfers
control to it. When DEBUG processing is complete, control
is returned to the original caller. For non-disk systems
control is returned immediately.

;
; IF ILLOGICAL CONDITION ARISES LOAD AND EXECUTE DEBUG.

. ; TEST FOR LEGITIMATE CONDITIONS

.

.
JR Z,OK ; JMP IF CONDITIONS ARE CORRECT
RST 30H ; ELSE LOAD AND EXECUTE DEBUG

OK . ; CONTINUE
.
.

RST 38 Interrupt Entry Point

This is the system entry point for all interrupts. It contains a
jump to section of code in the Communications Region
designed to field interrupts. That section of code consists
of a DI (disables further interrupts) followed by a RET
(returns to the point of interrupt) for non-disk systems, or a

jump to an interrupt processor in SYS0 if it is a DOS
system. For DOS systems the interrupt handler consists of
a task scheduler, where the exact cause of the interrupt is
determined (usually a clock interrupt) and the next task
from the task control block is executed. After task
completion, control returns to the point of interrupt.

;
; INTERCEPT ALL CLOCK INTERRUPTS AND TEST THE WIDGET
; ON PORT AB. IF THE READY LINE (BIT 8) IS TRUE
; (HIGH OR A 1) TURN OH THE COFFEE POT ON PORT DE.
; THEN JUMP TO THE NORMAL DOS INTERRUPT HANDLER
;

ORG 4012H ; REPLACE THE JUMP
JP HERE ; TO THE DOS INTERRUPT

; PROCESSOR WITH A JUMP
; TO OUR OWN.

ORG 0FD00H ; OUR INTERRUPT HANDLER
HERE DI ; DISABLE FURTHER

; INTERRUPTS
PUSH AF ; WE'LL NEED AF REGS
IN A,(0ABH) ; GET WIDGET STATUS
OR A ; SET STATUS FOR BIT 8
JP M,TOCP ; WIDGET ON IF MINUS
POP AF ; WIDGET OFF, RST REGS
JP 4518H ; GO TO DOS INTERRUPT

; HANDLER
TOCP LD A,21H ; CODE TO TURN ON COFFEE

; POT
OUT (0DEH),A ; SEND COMMAND TO POT
POP AF ; THEN RST REGS
JP 4518H ; AND GO TO DOS INTERRUPT
. ; HANDLER
.
.

CALL 09B4 Move SP Value In
BC/DC Into WRA1

Moves the single precision value in BC/DE into WRA1.
HL is destroyed BC/DE is left intact. Note - the mode flag
is not updated!

.

.
LD BC,(PART1) ; GET FIRST ARGUMENT
LD DE,(PART2) ; REMAINDER OF ARGUMENT

; NOTE - WE HAVE ASSUMED THAT
; WRA1 CURRENTLY CONTAINS A
; SINGLE PRECISION VALUE !!!

CALL 09B4H ; MOVE PART1 TO WRA1
LD BC,(PART3) ; GET VALUE TO BE ADDED
LD DE,(PART4) ; REST OF VAL
CALL 0716H ; MOVE RESULT (SUM) TO WRAS

.

.
PART2 DEFW 0000H ; LSB OF SP 1.5
PART1 DEFW 8140H ; EXPONENT AND MSB OF SP 1.5
PART4 DEFW 0000H ; LSB OF SP XX
PART3 DEFW 0000H ; EXPONENT/MSB OF SP XX

.

.

.

CALL 09B1 Moves A SP Value Pointed
To By HL To WRA1

Loads a single precision value pointed to by HL into
BC/DE and then moves it to WRA1. Destroys HL/BC/DE.

.

.
LD HL,VAL ; GET ADDR OF VALUE TO MOVE
CALL 09B1H ; MOVE VALUE TO WRA1
.
.
.

VAL DEFW 8140H ; SINGLE PREC 1.5
DEFW 0000H ; REMAINDER OF 1.5
.
.
.

29

CALL 09C2 Load A SP Value Into
BC/DE

Loads a single precision value pointed to by HL into
BC/DE. Uses all registers.

;
; COMPUTE THE PRODUCT OF TWO SP NUMBERS AND MOVE THE
; PRODUCT TO BC/DE.
;

LD HL,VAL1 ; ADDR OF VALUE 1
CALL 09B1H ; MOVE IT TO WRA1
LD HL,VAL2 ; ADDR OF VALUE 2
CALL 09C2H ; LOAD IT INTO BC/DE
LD BC,(4121H) ; LOAD EXPONENT/MSB
LD DE,(4123H) ; LOAD LSB
.
.
.

VAL1 DEFW XXXX
DEFW XXXX

VAL2 DEFW XXXX
DEFW XXXX
.
.
.

CALL 09BF Loads A SP Value From
WRA1 Into BC/DE

Loads a single precision value from WRA1 into BC/DE.
Note, the mode flag is not tested by the move routine. It is
up to the caller to insure that WRA1 actually contains a
single precision value.

.

.
LD HL,VAL1 ; ADDR OF VALUE TO MOVE TO WRA1
CALL 09B1H ; MOVE VAL1 TO WRA1
LD HL,VAL2 ; ADDR OF VALUE TO BE ADDED
CALL 09C2H ; LOAD VALUE TO BE ADDED TO BC/DE

CALL 0716H ; DO SINGLE PRECISION ADD
CALL 09BFH ; LOAD RESULT INTO BC/DE
LD (SUM1),DE ; SAVE LSB
LD (SUM2),BC ; SAVE EXPONENT/MSB
.
.
.

SUM1 DEFW 0 ; HOLDS LSB OF SINGLE PRECISION
SUM2 DEFW 0 ; HOLDS EXPONENT/MSB
VAL1 DEFW 0000H ; LSB OF S.P 2.0

DEFW 8200H ; EXPONENT/MSB OF S.P 2.0
VAL2 DEFW 00000 ; LSB OF S.P. 5.0

DEFW 8320H ; EXPONENT/MSB OF S.P. 5.0
.
.
.

CALL 09A4 Move WRA1 To
Stack

Moves the single precision value in WRA1 to the stack. It
is stored in LSB/MSB/Exponent order. All registers are left
intact. Note, the mode flag is not tested by the move
routine, it is simply assumed that WRA1 contains a single
precision value.

;
; ADD TWO SINGLE PRECISION VALUES TOGETHER AND SAVE
; THE SUM ON THE STACK. CALL A SUBROUTINE WHICH
; WILL LOAD THE VALUE FROM THE STACK, PERFORM IT'S OWN
; OPERATION AND RETURN.
;

LD HL,VAL1 ; ADDR OF VALUE TO MOVE TO WRA1
CALL 09B1H ; MOVE VAL1 TO WRA1
LD HL,VAL2 ; ADDR OF VALUE TO BE ADDED
CALL 09C2H ; LOAD VALUE TO BE ADDED TO BC/DE
CALL 0716H ; DO SINGLE PRECISION ADD
CALL 09A4H ; SAVE SUM ON STACK
CALL NSUB ; CALL NEXT SUBROUTINE
.
. ; RETURN WITH NEW VALUE IN
. ; IN WRA1.
.

NSUB POP HL ; GET RETURN ADDR
LD (RET),HL ; MOVE IT TO A SAFE PLACE
LD HL,VAL3 ; ADDR OF QUANTITY TO ADD
CALL 09B1H ; MOVE VAL3 TO WRA1
POP BC ; GET EXPONENT/MSB
POP DE ; GET LSB
CALL 0716H ; ADD TO VALUE PASSED
LD HL,(RET) ; GET RETURN ADDR
JP (HL) ; AND RET TO CALLER

VAL1 DEFW 0000H ; LSB OF S.P 2.0
DEFW 8200H ; EXPONENT/MSB OF S.P 2.0

VAL2 DEFW 00000 ; LSB OF S.P. 5.0
DEFW 8320H ; EXPONENT/MSB OF S.P. 5.0

VAL3 DEFW 0AA6CH ; LSB OF S.P. -.333333
DEFW 7FAAH ; EXPONENT/MSB OF S.P. -.33333
.
.

CALL 09D7 General Purpose Move

Moves contents of B-register bytes from the address in DE
to the address given in HL. Uses all registers except C.

;
; BLANK FILL A DCB THEN MOVE A NAME INTO IT
;

LD A,20H ; HEX VALUE FOR BLANK
LD B,32 ; NO. OF BYTES TO BLANK
LD DE,IDCB ; DE = ADDR OF DCB

LOOP LD (DE),A ; STORE A BLANK INTO DCB
INC DE ; BUMP STORE ADDR
DJNZ LOOP ; LOOP TILL DCB BLANKED
LD DE,NAME ; NOW, MOVE FILE NAME TO IDCB
LD HL,IDCB ; DE = NAME ADDR, HL = DCB ADDR
LD B,LNG ; NO. OF CHARS IN NAME TO MOVE
CALL 09D7H ; MOVE NAME TO DCB
.
.
.

IDCB DEFS 32 ; EMPTY DCB
LNG EQU ENDX-$; LET ASSEMBLER COMPUTE LNG OF

; FILE NAME
NAME DEFM 'FILE1/TXT' ; NAME TO BE MOVED TO DCB
ENDX EQU $; SIGNAL END OF NAME

.

.

CALL 0982 Variable Move Routine

Moves the number of bytes specified in the type flag
(40AF) from the address in DE to the address in HL, uses
registers A, DE, HL.

;
; LOCATE THE ADDRESS OF A DOUBLE PRECISION VARIABLE
; THEN MOVE IT TO A LOCAL STORAGE AREA.
;

LD HL,NAME1 ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; GET ADDR OF STRING X
RST 20H ; MARE SURE IT'S DBL PREC.
JR NC,OK ; JMP IF DBL PREC.
JP ERR ; ELSE ERROR

OK LD HL,LOCAL ; HL - LOCAL ADDR
; DE - VARIABLE ADDR

CALL 0982H ; MOVE VALUE FROM VLT TO LOCAL
; AREA.

.

.

.
ERR .

.
NAME1 DEFM 'X' ; NAME OF VARIABLE TO LOCATE

DEFB 0 ; MUST TERM WITH A ZERO
LOCAL DEFS 8 ; ENOUGH ROOM FOR DBL PREC. VALUE

.

.

.

30

CALL 29C8 String Move

On entry, HL points to the string control block for the string
to be moved, and DE contains the destination address. All
registers are used. The string length and address are not
moved. String control blocks have the format:

DEFB X STRING LENGTH
DEFW ADDR STRING ADDRESS

;
; LOCATE THE ADDRESS OF A STRING VARIABLE CALLED F$.
; MOVE THE STRING F$ TO A LOCAL STORAGE AREA CALLED
 DCB.
;

LD HL,NAME ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; FIND ADDR OF STRING F$
RST 20H ; MAKE SURE IT'S A STRING
JR Z,OK ; JMP IF STRING
JP ERR ; ELSE ERROR

 OK LD A,(DE) ; GET LENGTH OF STRING
CF 33 ; WHICH MUST BE < 33
JP P,ERR ; ERR, STRING LNG > 32
PUSH DE ; SHORTCUT FOR MOVING DE TO BL
POP HL ; ADDE OF STRING TO HL
LD DE,LOCAL ; DE - LOCAL ADDR
CALL 29C8H ; MOVE STRING VARIABLE TO

; LOCAL AREA
.

ERR .
.

NAME DEFM 'F$' ; NAME OF VARIABLE TO FIND
DEFB 0 ; REQUIRED TO TERM NAME

LOCAL DEFS 32 ; LOCAL STORAGE AREA
.
.
.

Basic Functions

Basic Functions differ from System Functions because they
deal mainly with tables in the Communications Region
(CR). Because of this, these entry points assume that the
CR has been initialized and properly maintained. This
means that the BASIC Interpreter must have been entered
prior to calling any of these routines, and the BASIC utility
in RAM must be intact. The assembly program making the
CALL must be running as a subroutine called by a BASIC
program.

For a complete description of the tables and storage areas in
the Communication Region see chapter 4.

CALL 1B2C Search For Line
Number

Searches the Program Statement Table (PST) for a
BASIC statement with the line number specified in the
DE register pair. All registers are used. The exit conditions
are:

STATUS CONDITION REGISTERS

C/Z LINE FOUND. BC = STARTING ADDRESS OF LINE IN PST.
HL = ADDRESS OF FOLLOWING LINE IN PST.

NC/Z LINE DOES NOT EXIST. LINE NUMBER TOO LARGE
HL/BC = ADDRESS OF NEXT AVAILABLE LOCATION IN

NC/NZ LINE DOES NOT EXIST. BC = ADDRESS OF FIRST
LINE NUMBER GREATER THAN THE ONE SPECIFIED.
HL - ADDRESS OF FOLLOWING LINE.

;
; LOCATE THE ADDRESS OF BASIC STATEMENT NUMBER 750
; IN THE PST. IF THE LINE DOES NOT EXIST RETURN A
; STATUS OF -1 IF IT IS LARGER THAN ANY CURRENT LINE
; NUMBER, OR A -2 IF IT THERE ARE LINES GREATER THAN
; 750. IF THE LINE IS FOUND RETURN A STATUS OF ZERO.
;

.
LD DE,750 ; LINE NUMBER TO SEARCH FOR
CALL 1B2CH ; SEEK LINE IN PST
JR NC,NO ; NC SET IF LINE NOT THERE
LD HL,3 ; INCREMENT TO STEP OVER
ADD HL,BC ; POINTER TO NEXT LINE/LINE NO.

; RST BELOW WILL INCREMENT
; BEFORE LOADING

RST 10H ; FETCH FIRST CHAR OF
; STATEMENT.

.

.
LD A,0 ; SIGNAL LINE FOUND
RET ; RETURN TO CALLER

NO JR NC,M2 ; JMP IF LINE NO. TOO BIG
LD A,0FFH ; SIGNAL LINE NOT THERE
RET ; RETURN TO CALLER

M2 LD A,0FEH ; SIGNAL LINE NOT THERE
; TOO BIG

RET ; RETURN TO CALLER

CALL 260D Find Address Of
Variable

This entry point searches the Variable List Table (VLT)
for a variable name which matches the name in the string
pointed to by HL. If the variable exists, its address is
returned in DE. If it is not defined, then it is created with an
initial value of zero and its address is returned in DE.
Dimensioned and non-dimensioned variables may be
located, and suffixes for data mode may be included in the
name string. A byte of machine zeros must terminate the
name string. All registers are used.

;
; LOCATE THE ADDRESS OF THE VARIABLE A3
;

LD HL,STRNG ; NAME OF VARIABLE TO LOCATE
CALL 260DH ; FIND IT'S ADDRESS IN VLT
LD (ADDR),DE ; SAVE FOR FUTURE REFERENCE
.
.

STRNG DEFM 'A3' ; VARIABLE NAME IS A3
DEFB 0

STRNG DEFM 'A(25)' ; VARIABLE NAME IS A(25)
DEFB 0

STRNG DEFM 'A%' ; VARIABLE NAME IS A%
DEFB 0

31

CALL 1EB1 GOSUB

Can be used to execute the equivalent of a GOSUB
statement from an assembly program. It allows a BASIC
subroutine to be called from an assembly subroutine. After
the BASIC subroutine executes, control returns to the next
statement in the assembly program. All registers are used.
On entry, the HL must contain an ASCII string with the
starting line number of the subroutine.

;
; SIMULATE A GOSUB STATEMENT FROM AN ASSEMBLY LANGUAGE PROGRAM
;

LD HL,STRNG ; ADDRESS OF BASIC LINE NUMBER TO GOSUB TO
CALL 1EB1H ; EQUIVALENT OF A GOSUB 1020
.
. ; WILL RETURN HERE WHEN BASIC PROGRAM
. ; EXECUTES A RETURN
.

STRNG DEFM '1020' ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

CALL 1DF7 TRON

Turns TRON feature on. Causes line numbers for each
BASIC statement executed to be displayed. Uses A-
register.

;
; TURN TRACE ON THEN EXECUTE A BASIC SUBROUTINE
;

CALL 1DF7H ; TURN TRACE ON
LD HL,LN ; LINE NO. TO GOSUB
CALL lEB1H ; DO A GOSUB 1500
.
.
.

LN DEFM '1500' ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

CALL 1DF8 TROFF

Disables tracing feature. Uses A register.

;
; ENABLE TRACE. EXECUTE BASIC SUBROUTINE. UPON
; RETURN DISABLE TRACING.
;

CALL 1DF7H ; TURN TRACE ON
LD HL,LN ; LINE NO. OF BASIC SUBROUTINE
CALL 1EB1H ; DO A GOSUB 2000
CALL 1DF8H ; TURN OFF TRACING
RET ; RETURN TO CALLER

LN DEFM '2000' ; LINE NO. OF BASIC SUBROUTINE
DEFB 0

JP 1EDF RETURN

Returns control to the BASIC statement following the last
GOSUB call. An assembly program called by a BASIC
subroutine may wish to return directly to the original caller
without returning through the subroutine entry point. This
exit can be used for that return. The return address on the
stack for the call to the assembly program must be cleared
before returning via 1EDF.

300 GOSUB 1500 CALL BASIC SUBROUTINE
310 GOSUB 1510 RETURN HERE FROM SUBROUTINE CALL
320 .
 .
 .
1500 Z=USR1(0) CALL ASSEMBLY SUBROUTINE & RETURN

1510 Z=USR2(0) CALL ANOTHER SUBROUTINE & RETURN
1530 .
 .
 .

;
; ENTRY POINT FOR USR1 SUBROUTINE
;

. ; DO WHATEVER PROCESSING IS

. ; REQUIRED

.
POP AF ; CLEAR RETURN ADDR TO 1510

; FROM STACK
JP 1EDFH ; RETURN DIRECTLY TO 310

;
; ENTRY POINT FOR USR2 SUBROUTINE
;

. ; PERFORM NECESSARY PROCESSING

. ; FOR USR2 CALL
POP AF ; CLEAR RETURN ADDR TO 1520
JP 1EDFH ; RETURN DIRECTLY TO 320

CALL 28A7 Write Message

Displays message pointed to by HL on current system
output device (usually video). The string to be displayed
must be terminated by a byte of machine zeros or a carriage
return code 0D. If terminated with a carriage return, control
is returned to the caller after taking the DOS exit at 41D0
(JP 5B99). This subroutine uses the literal string pool table
and the String area. It should not be called if the
communications region and the string area are not properly
maintained.

;
; WRITE THE MESSAGE IN MLIST TO THE CURRENT SYSTEM
; OUTPUT DEVICE.
;

LD HL,MLIST ; HL - ADDR OF MESSAGE
CALL 28A7H ; SEND TO SYSTEM OUTPUT DEVICE
.
.
.

MLIST DEFM 'THIS IS A TEST'
DEFB 0DH ; THIS TERMINATOR REQUIRED
.
.
.

CALL 27C9 Return Amount Of
Free Memory

Computes the amount of memory remaining between the
end of the variable list and the end of the stack. The result
is returned as a single precision number in WRA1 (4121 -
4124).

;
; TAKE ALL AVAILABLE MEMORY BETWEEN THE STACK AND
; THE END OF THE VLT AND DIVIDE IT INTO REGIONS FOR
; USE IN A TOURNAMENT SORT
;

.

.

32

DI ; MUST GO INHIBITED BECAUSE
; THERE WILL BE NO STACK SPACE
; FOR INTERRUPT PROCESSING

CALL 27C9H ; GET AMT OF FREE SPACE
CALL 0A7FH ; CONVERT IT TO INTEGER
LD DE,(4121H) ; GET IT INTO DE
LD HL,500 ; MAKE SURE IT'S AT
RST 18H ; LEAST 500 BYTES
JR C,ERR ; ERR - INSUFFICIENT SPACE
LD HL,(40D1H) ; START OF AREA
LD (EVLT),HL ; SAVE FOR RESTORATION
LD HL,0 ; SO WE CAN LOAD CSP
ADD HL,SP ; END OF AREA
LD (ECSP),HL ; SAVE FOR RESTORATION
.
.
.

CALL 2B75 Print Message

Writes string pointed to by HL to the current output device.
String must be terminated by a byte of zeros. This call is
different from 28A7 because it does not use the literal string
pool area, but it does use the same display routine and it
takes the same DOS Exit at 41Cl. Uses all registers. This
routine can be called without loading the BASIC utility, if a
C9 (RET) is stored in 41C1.

;
; WRITE MESSAGE TO CURRENT OUTPUT DEVICE
;

LD HL,MLIST ; ADDRESS OF MESSAGE
CALL 2B75H ; SEND MEG TO SYSTEM DEVICE
.
.

MLIST DEFM 'THIS IS A TEST'
DEFB 0 ; REQUIRED TERMINATOR
.
.
.

Internal Number Representation

BASIC represents integers as signed 16 bit quantities. Bit
15 contains the sign bit while bits 0-14 hold the magnitude.
The largest possible positive value that can be represented
is 32767 (dec.) or 7FFF (hex). The smallest possible
negative value that can be represented is -32768 (dec.) or
8000 (hex).

Bit --> 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Sign: Magnitude
 0 = Positive
 1 = Negative

positive values 0000 - 7FFF (hex.) : 0 to 32767 (dec.)
Negative values FFFF - 8000 (hex.) : -l to -32768
(dec.)

Note - negative values are represented as the one's
complement of the positive equivalent.

BASIC supports two forms of floating point numbers. One
type is single precision and the other is double precision.
Both types have a signed seven bit exponent. Single
precision numbers have a signed 24 bit mantissa while
double precision values have a signed 56 bit mantissa. Both
types have the following format

Bit --> 31 24 23 16 15 8 7 0

Sign of exponent: Magnitude of the Mantissa (value) is left justified
0 = positive, move exponent. Number (normalized) so that MS bit is on
binary point to the of bit positions position # 23. If positive then bit 23
right. to move binary will be set to 1 during arithmetic
1 = negative, move point. operations. Negative values stored as
binary point to the positive, but with bit 23 on.
left.

Sign of mantissa:
0 = value positive
1 = value negative

The only difference between single and double precision is
in the number of bits in the mantissa. The maximum
number of significant bits representable in a positive single
precision value is 2 ** 24-1 or 8 388 607 decimal or
7F FF FF hex. Double precision numbers have an extended
mantissa so positive values up to 2 ** 56-1, or 3.578 X 10
** 16 can be represented accurately.

These numbers 8 388 607 and 3.578 X 10 ** 16 are not the
largest numbers that can be represented in a single or
double precision number, but they are the largest that can
be represented without some loss of accuracy. This is due
to the fact that the exponent for either type of number
ranges between 2 ** -128 and 2 ** 127. This means that
theoretically the binary point can be extended 127 places to
the right for positive values and 128 to the left for negative
values even though there are only 24 or 56 bits of
significance in the mantissa. Depending of the type of data
being used (the number of significant digits) this may be all
right. For example Planck's constant which is 6.625 X 10
** -34 J-SEC could be represented as a single precision
value without any loss of accuracy because it has only four
significant digits. However if we were totaling a money
value of the same magnitude it would have to be a double
precision value because all digits would be significant.

33

Chapter 3

Cassette & Disk

This chapter contains an introductory description of
physical I/O operations for the cassette and disk. The
sample programs are for purposes of illustration only and
are not recommended for adaptation to general applications.
There may be special situations, however when a simple
READ/WRITE function is needed and for limited
applications they will serve the purpose.

Cassette I/O

Cassette I/O is unusual from several aspects. First, each
byte is transmitted on a bit-by-bit basis under software
control. This is radically different from all other forms of
I/O where an entire byte is transferred at one time. For
most I/O operations, referencing memory or executing an
IN or OUT instruction, is all that is required to transfer an
entire byte between the CPU and an external device.
However, If the device is a cassette, each bit (of a byte to be
transferred) must be transferred individually by the
software.

The second unusual aspect is the procedure used for
transmitting these bits. Exact timing must be adhered to
and the program must use different code depending on
whether a binary zero or one is to be written. Each bit
recorded consists of a clock pulse (CP) followed by a fixed
amount of erased tape followed by either another CP if a
binary one is represented, or a stretch of erased tape if a
binary zero is being represented. A binary one and zero
would appear as:

 <---C---> <----D--->

<-------------A-----------><-------------B-------------->

Binary One

The distance between points A, B, C, and D is measured in
units of time. Because time can be measured in machine
cycles the value given for distances will be in machine
cycles where one instruction (any instruction regardless of
how long it is) equals one cycle and one cycle equals one
microsecond. This is crude but workable. The sum of A B
is supposed to be 2 milliseconds for Level II.

Using the crudity described above and counting instructions
used in the Level II software gives the following values.

A B 1.4 millisec per half bit 2.8 millisec per bit.
C .20 millisec * 2 per CP .40 millisec
D 1.0 millisec

Before discussing programming for cassette I/O in any
detail we should review the fundamentals. Drive selection
is accomplished by storing either a 01 (drive 1) or 02 (drive
2) in 37E4. Motor start and loading or clearing the data
latch is achieved by sending a command value to the
cassette controller on port FF. The command value is
shown below.

 7 6 5 4 3 2 1 0
 x x x x x x x x : 00 - erase tape
 outsig 1 : 01 - positive signal
 outsig 2 : 10 - negative signal
Not used
for cassette 1 = motor on
operations 0 motor off

 1 = 32 char/line
 0 = 64 char/line

 <-----Clock Pulse--------><-------Data Pulse------->

34

Be careful to preserve the current video character size when
sending commands to the cassette. The system maintains a
copy of the last command sent to the video controller in
403D. Bit 3 of that word should be merged with any
commands issued to the cassette.

A write operation of one bit (called a bit cell) can be
divided into two steps. First a clock pulse (CP) is written to
signal the start of a bit. It is followed by a strip of erased
tape which is considered part of the CP. Next, another CP is
written if the bit is a one, or more blank tape is written if
the bit is a zero.

Read operations begin by searching for the clock pulse and
skipping to the data pulse area. The data pulse area is then
read returning a zero if blank tape was encountered or a one
if non-blank tape was found. Below are examples of code
that could be used for cassette operations. The code used by
Level II can be found around the area 01D9 - 02A8 in the
Level II listing.

Assembler Object Code Format

DOS loads disk object files with a utility program called
LOAD. They can also be loaded under DOS by entering
the name of a file that has an extension of CMD. The
format of a disk object file is shown below. It is more
complex than a cassette file because it has control codes
embedded in the object code. The loader reads the file into
a buffer before moving the object code to its designated
address. The control codes are used to indicated to the
loader where the code is to be loaded, how many bytes are
to be loaded, and where execution is to begin.

Control Code: 01 (data to be loaded follows)
Count : XX (count of bytes to load, 0 = 256)
Load Address: XX (load address in LSB/MSB order)
 XX
Load Data : XX
 XX
 .
Control Code: 02 (beginning execution address follows)
 XX (this byte is to be discarded)
Address : XX (execution address in
 XX (LSB/MSB order)

Control Code: 03 - 05 (following data is to be skipped)
Count : XX (count of bytes to skip)
Skip Data : XX (this data is to be skipped)
 XX
 .

Cassette Recording Format

The recording format used by Level II is as follows:

1: BASIC Data Files

0 0 0 0 . . . 0 A5 X X X X . . . X
(256 zeros)

 Synch Bytes Data Bytes

2: BASIC Programs

0 0 0 0 . . . 0 A5 D3 D3 D3 Y X X X X . . X 00 00 00

Synch Bytes
 File Header BASIC EOF
 Name Program Marker

3: Absolute Assembler Programs

55 N N N N N N 3C Y ZZ X X X X . . . X C 78 TA

 Transfer address
Synch Start Program or Data Transfer
 of Checksum address follows
File binary Load address
name file Number of bytes to load

SELECT UNIT AND TURN ON MOTOR
LD A,01 ; CODE FOR UNIT 1
LD (37E4H),A ; SELECT UNIT 1
LD A,04 ; COMMAND VALUE: TURN ON MOTOR
OUT (0FFH),A ; START MOTOR, CLEAR DATA LATCH

WRITE BYTE CONTAINED IN THE A REGISTER
PUSH AF
PUSH BC
PUSH DE
PUSH HL ; SAVE CALLERS REGISTERS
LD L,8 ; NUMBER OF BITS TO WRITE
LD H,A ; H = DATA BYTE

LOOP CALL CP ; WRITE CLOCK PULSE FIRST
LD A,H ; GET DATA BYTE
RLCA ; HIGH ORDER BIT TO CARRY
LD H,A ; SAVE REPOSITIONED BYTE
JR NC,WR ; BIT WAS ZERO. WRITE BLANK TAPE
CALL CP ; BIT WAS ONE. WRITE A ONE DATA PULSE

TEST DEC L ; ALL BITS FROM DATA BYTES WRITTEN ?
JR NZ,LOOP ; NO! JUMP TO LOOP
POP HL ; YES! RESTORE CALLERS REGISTERS
POP DE
POP BC
POP AF
RET ; RETURN TO CALLER

WR LD B,135 ; DELAY FOR 135 CYCLES (988 USEC) WHILE
WR1 DJNZ WR1 ; BLANK TAPE IS BEING WRITTEN

JR TEST ; GO TEST FOR MORE BITS TO WRITE
CP LD A,05 ; COMMAND VALUE MOTOR ONE, OUTSIG 1

OUT (0FFH),A ; START OF CLOCK PULSE
LD B,57 ; DELAY FOR 57 (417 USEC) CYCLES

CP1 DJNZ CP1 ; GIVES PART OF CP
LD A,06 ; COMMAND VALUE: MOTOR ON, OUTSIG 2
OUT (0FFH),A ; 2ND PART OF CLOCK PULSE
LD B,57 ; DELAY FOR 57 CYCLES (417 USEC)

CP2 DJNZ CP2 ; GIVES PART OF CP
LD A,4 ; COMMAND VALUE: MOTOR ON, NO OUTSIG
OUT (0FFH),A ; START ERASING TAPE
LD B,136 ; DELAY FOR 136 CYCLES (995 USEC)

CP3 DJNZ CP3 ; GIVES TAIL OF CLOCK PULSE
RET ; RETURN TO CALLER

READ NEXT BYTE FROM CASSETTE INTO A REGISTER
XOR A ; CLEAR DESTINATION REGISTER
PUSH BC
PUSH DR
PUSH HL ; SAVE CALLERS REGISTERS

LOOP LD B,8 ; NUMBER OF BITS TO READ
CALL RB ; READ NEXT BIT. ASSEMBLE INTO

; BYTE BUILT THUS FAR.
POP HL
DJNZ LOOP ; LOOP UNTIL 8 BITS USED
POP DE
POP BC ; RESTORE CALLERS REGISTERS
RET ; RETURN TO CALLER

RB PUSH BC
PUSH AF

RB1 IN (0FFH),A ; READ DATA LATCH
RLA ; TEST FOR BLANK/NON-BLANK TAPE
JR NC,RB1 ; BLANK, SCAN TILL NON-BLANK

; IT WILL BE ASSUMED TO BE START
; OF A CLOCK PULSE.

LD B,57 ; DELAY FOR 57 CYCLES WHILE
RB2 DJNZ RB2 ; SKIPPING OVER FIRST PART OF CP

LD A,04 ; COMMAND VALUE: MOTOR ON, CLEAR
OUT (0FFH),A ; DATA LATCHES
LD B,193 ; DELAY FOR 193 CYCLES WHILE

RB3 DJNZ RB3 ; PASSING OVER END OF CP
IN A,(0FFH) ; WE SHOULD BE POSITIONED INTO

; THE DATA PULSE AREA. READ
; THE DATA PULSE.

LD B,A ; SAVE DATA PULSE
POP AF ; ACCUMULATED BYTE THUS FAR
RL B ; DATA PULSE TO CARRY WILL BE A

; ZERO IF BLANK TAPE, 1 IF NON-BLANK
RLA ; COMBINE NEW DATA PULSE (1 BIT)
PUSH AF ; WITH REST OF BYTE AND SAVE
LD A,4 ; COMMAND VALUE: MOTOR ON, CLEAR OUTSIG
OUT (0FFH),A ; CLEAR DATA LATCHES
LD B,240 ; DELAY LONG ENOUGH TO SKIP TO

RB4 DJNZ RB4 ; END OF DATA PULSE
POP BC
POP AF ; A = DATA BYTE
RET

TURN OFF MOTOR
LD A,00 ; COMMAND VALUE: MOTOR OFF
OUT (0FFH),A ; TURN MOTOR OFF
RET

35

Disk I/O

The disk operations discussed in this section are
elementary in as much as there is no consideration given to
disk space management or other functions normally
associated with disk I/O. What is presented are the
fundamental steps necessary to position, read, and write
any area of the disk without going through DOS. It will be
assumed that the reader is familiar with the I/O facility
provided by DOS and is aware of the pitfalls of writing a
diskette without going through DOS.

Disks which normally come with a Model I system are
single sided, 35 track 5 1/4' mini-drives. It is possible to
substitute other drives with a higher track capacity such as
40, 77, or 80 tracks, but then a modified version of DOS
must be used. Dual sided mini-drives are becoming
available and eventually they should replace the single
sided drives. Dual density drives are another type of mini-
drive that are available, but like the dual sided drives they
require a modified version of DOS.

The type of programming used in this example is called
programmed I/O. It is called that because the program must
constantly monitor the controller status in order to
determine if it is ready to send or receive the next data byte.
Thus each byte is transferred individually under program
control. An alternative to programmed I/O is DMA or
Direct Memory Access. Using this method the controller is
told the number of bytes to transfer and the starting transfer
address and it controls the transfer of data leaving the CPU
free to perform other tasks. On the Model I systems there is
no DMA facility so programmed I/O must be used.

This example will assume that a DOS formatted diskette is
being used. New diskettes are magnetically erased. Before
they can be used they must be formatted. That is each
sector and track must be uniquely identified by recording its
track and sector number in front of the data area of each
sector. There is some variability in the coded information
which precedes each sector so it is not always possible to
read any mini-diskette unless it originated on the same type
of machine.

Like most of the I/O devices on the Model I the disk is
memory mapped. There are five memory locations
dedicated to the disk. They are:

37E1 Unit Select Register
37EC Command/Status Register
37ED Track Update Register
37EE Sector Register
37EF Data Register

All disk commands except for unit selection are sent to
37EC. If the command being issued will require additional
information such as a track or sector number, then that data
should be stored in the appropriate register before the
command is issued. You may have noticed that the
command and status register have the same address.

Because of that, a request for status (load 37EC) cannot
occur for 50 microseconds following the issuing a
command (store 37EC).

Unit selection is accomplished by storing a unit mask value
into location 37E1. That mask has the format:

 BIT 7 6 5 4 3 2 1 0
 X X X X X X X X

Not Used 1 = SELECT UNIT 0
 1 = SELECT UNIT 1
 1 = SELECT UNIT 2
 1 = SELECT UNIT 3

More than one unit can be selected at a time. For example a
mask of 3 would select units 0 and 1. When any unit is
selected the motor on all units are automatically turned on.
This function is performed automatically by the expansion
interface.

Controller Commands

The Model I uses a Western Digital FD 1771B-01 floppy
disk controller chip. It supports twelve 8-bit commands.
They are:

Restore: Positions the head to track 0

 7 6 5 4 3 2 1 0 <-- Bit

 0 0 0 0 X X X X

 Mode Stepping rate:
00 = No verify bead position 00 = 6 mS / step
01 = Verify head position 01 = 6 mS / step
10 = Not used 10 = 10 mS / step
11 = Verify head position 11 = 20 mS / step

Seek: Positions the head to the track specified in the data
register (37EF).

 7 6 5 4 3 2 1 0 <-- Bit

 0 0 0 1 X X X X

 Mode Stepping rate

Step: Moves the head one step in the same direction as last
head motion.

 7 6 5 4 3 2 1 0 <-- Bit

 0 0 1 X X X X X

Track update Stepping rate
 Mode

0 = No track register update
1 = Track register update

36

Step Head In: Moves the head in towards the innermost
track one position.

 0 1 0 X X X X X

Track update Stepping rate
 Mode

Step Head Out: Moves the head out towards the outer-
most track one position

 0 1 1 X X X X X

Track update Stepping rate
 Mode

Read Data: Transmits the next byte of data from the sector
specified by the value in the sector register.

 1 0 0 X X X 0 0

Multi-sector Head settle:
0 = Read 1 Sect 0 = No delay
1 = Multi-sector 1 = 10 mS delay
 Format:
 0 = Non IBM
 1 = IBM

Write Data: Sends the byte of data in the data register to
the next position in the sector specified by the value in the
sector register.

 1 0 1 X X X X X

Multi-sector Address mark:
0 = Write 1 00 = FB, 01 = FA
1 = Multi-sector 10 = F9, 11 = F8
Format Head settle:
0 = Non IBM 0 = Non
1 = IBM 1 = 10 mS delay

Read Track: Reads an entire track beginning with the index
mark.

 1 1 1 0 0 1 0 0

Read Address: Reads the address field from the next
sector to pass under the head.

 1 1 0 0 0 1 0 0

Write Track: Writes a full track starting at the index mark
and continuing until the next index mark is encountered.

 1 1 1 1 0 1 0 0

Force Interrupt: Terminates the current operation and / or
generates an interrupt if one of the following four
conditions is true:

 1 1 0 1 X X X X

 Terminate conditions:
 00 = None
 01 = Interrupt on ready
 02 = Interrupt on not ready
 04 = Interrupt on index pulse
 10 = Hone

Read Status: The status of the Floppy Controller is returned
whenever location 37EC is read. The status word has the
following format:

 X X X X X X X X

 Read / Write Seek

 Busy Busy
 DRQ DRQ
 Lost Data Missing Address
 CRC Error 0
 Missing Record 0
 0 0
 0 Write Protect
 Not Ready Not Ready

37

Disk Programming Details

Disk programming can be broken down into several easily
managed steps. They are:

1. Select the unit and wait for ready.
2. Position the head over the desired track.
3. Issue the Read/Write command for the required sector
4. Transfer a Sectors worth of data, on a byte at a time basis.

Each transfer must be preceded by a test to see if the controller
either has the next data byte, or is ready to accept the next data
byte.

This program demonstrates a single sector read from track
25 (decimal), sector 3.

ORG 7000H
LD BC,256 ; BYTE COUNT
PUSH BC ; B = 1 C = 0
LD HL,BUFF ; BUFFER ADDRESS
LD A,1 ; UNIT SELECT MASK (DRIVE 0)
LD (37E1H),A ; SELECT DRIVE 0, START MOTOR
LD D,25 ; TRACK NUMBER
LD E,3 ; SECTOR NUMBER
LD (37EEH),DE ; SPECIFY TRACK AND SECTOR

; TRACK NO. TO DATA REGISTER
; (37EFH)
; SECTOR NO. TO SECTOR REGISTER.

LD A,1BH ; SEEK OP CODE. NO VERIFY
; (FOR VERIFY 17H)

LD (37ECH),A ; SEEK REQ. TO COMMAND REGISTER.
LD B,6 ; GIVE CONTROLLER A CHANCE

; TO DIGEST
DELAY DJNZ DELAY ; COMMAND BEFORE ASKING STATUS
WAIT LD A,(37ECH) ; GET STATUS OF SEEK OF

BIT 0,A ; TEST IF CONTROLLER BUSY
JR NZ,WAIT ; IF YES, THEN SEEK NOT DONE
LD A,88H ; SEEK FINISHED. LOAD READ

; COMMAND
LD (37ECH),A ; AND SEND TO CONTROLLER
LD B,6 ; GIVE CONTROLLER A CHANCE TO

DELAY1DJNZ DELAY1 ; DIGEST COMMAND BEFORE
; REQUESTING
; A STATUS

WAIT1 LD A,(37ECH) ; NOW, ASK FOR STATUS
BIT 1,A ; IS THERE A DATA BYTE PRESENT ?
JR Z,WAIT1 ; NO, WAIT TILL ONE COMES IN
LD A,(37EFH) ; YES, LOAD DATA BYTE
LD (HL),A ; STORE IN BUFFER
INC HL ; BUMP TO NEXT BUFF ADDR
DEC BC ; TEST FOR 256 BYTES TRANSFERRED
LD A,B ; COMBINE B AND C
OR C ; TO TEST BOTH REGISTERS
JR NZ,WAIT ; GO GET NEXT BYTE
.
.
.

DOS Exits

DOS Exits were discussed in general terms in chapter 1.
They are used as a means of passing control between
Level II BASIC and Disk BASIC. The Exit itself is a
CALL instruction in the ROM portion of the system to a
fixed address in the Communications Region. Contained at
that CALL'd address will be either a RETURN instruction
or a JUMP to another address in Disk BASIC. On a Level
II system without disks these CALL'd locations are set to
RETURNS during IPL processing. On disk based systems
they are not initialized until the BASIC command is
executed. At that time JUMPS to specific addresses within
Disk BASIC are stored at the CALL locations.

The term DOS Exit really has two different meanings.
DOS Exits are calls from ROM BASIC to Disk BASIC
while in the Input Phase, while executing a system level
command, or while executing a verb action routine. These
exits allow extensions to be made to the routines in ROM.
The exits are not strategically located so that an entire ROM
routine could be usurped, but they are conveniently placed
for intercepting the majority of the ROM routine
processing. Another type of DOS Exit is the Disk BASIC
Exit. These exits are radically different from the other ones,
they are only entered on demand when a Disk BASIC token
is encountered during the Execution Phase. All of the
processing associated with these tokens is contained in the
Disk BASIC program. There is no code in ROM for
executing these tokens.

The following descriptions are for DOS Exits as opposed to
Disk BASIC Exits. The calling sequence for each of the
DOS Exits vary. Before writing a program to replace any of
these Exits study the code around the CALL, paying
particular attention to register usage. What happens at the
exits is not discussed here. If it is important, disassemble
the Disk BASIC utility program and examine the code at
the BASIC address assigned to the exit. An example of how
both types of Exits can be intercepted can be found in
chapter 6.

All these addresses are for NEWDOS 2.1, TRSDOS
addresses will differ.

Level II DOS Exits BASIC
ADDRESS DESCRIPTION ADDRESS ADDRESS

19EC Call to load DISK BASIC error 41A6
 processing. Error number most
 be in B-register.
27FE Start of USR processing 41A9 5679
1A1C BASIC start up. Just before 41AC 5FFC
 BASIC's 'READY' message.
0368 At start of keyboard input 41AF 598E
1AA1 Input scanner after tokenizing 41B2 6033
 current statement.
1AEC Input scanner after updating 41B5 5BD7
 program statement table.
1AF2 Input scanner after reinitial- 41B8 5B8C
 izing BASIC.
1B8C/1DB0 Initializing BASIC for 41BB 60A1
 new routine. During END processing.
2174 During initializing of syatena 41BE 577C
 output device.
032C During writing to system output 41C1 59CD
 device.
0358 When scanning keyboard. Called 41C4 59CD
 from INKEY$, at end of execution
 of each BASIC statement.
1EA6 At start of RUN NNN 41C7 5F78
 processing.
206F At beginning of PRINT 41CA 51A5
 processing.
20C6 During PRINT # or PRINT 41CD 5B9A
 item processing.
2103 When skipping to next line on 41D0 5B99
 video during a BASIC output
 operation.
2108/2141 At start of PRINT on cassette 41D3 5B65
 and during PRINT TAB processing.
219E At beginning of INPUT processing ... 41D6 5784
222D During READ processing when a 41DC 5E63
 variable has been read.
2278/2278 At end of READ processing 41DF 579C
2B44/2B44 From LIST processing
02B2 During SYSTEM command operation 41E2 5B51

38

Disk BASIC Exits

These exits are made from Level II during the Execution
Phase whenever a token in the range of BC - FA is
encountered. Tokens with those values are assigned to
statements which are executed entirely by Disk BASIC.
When a token in the given range is found control is passed
indirectly through the Verb Action Routine List (see
chapter 4) to the appropriate Disk BASIC Exit in the
Communications Region. Control is returned to Level II at
the end of the verb routine's processing.

 CR DISK BASIC
 TOKEN VERB ADDRESS ADDRESS

 E6 CVI 4152 5E46
 BE FN 4155 558E
 E7 CVS 4158 5E49
 B0 DEF 415B 5655
 E8 CVD 415E 5E4C
 E9 EOF 4161 61E8
 EA LOC 4164 6231
 EB LOF 4167 6242
 EC MKI$ 416A 5E20
 ED MKS$ 4160 5E30
 EE MKD$ 4170 5E33
 85 CMD 4173 56C4
 C7 TIME$ 4176 5714
 A2 OPEN 4179 6349
 A3 FIELD 417C 60AB
 A4 GET 417F 627C
 A5 PUT 4182 627B
 A6 CLOSE 4185 606F
 A7 LOAD 4188 5F7B
 A8 MERGE 418B 60DB
 A9 NAME 418E 6346
 AA KILL 4191 63C0
 NONE & 4194 5887
 AB LSET 4197 60E6
 AC RSET 419A 60E5
 C5 INSTR 4190 582F
 AD SAVE 41A0 6044
 9C LINE 41AD 5756
 C1 USR 41A9 5679

Disk Tables

The most frequently used disks on the Model I series are 5
1/4' single sided single density mini-floppy drives. A
variety of other units are available and could be used,
however some hardware and software modifications would
be necessary. Examples of other units would be: 5 1/4' dual
headed and dual density drives; 8' single and dual headed
plus single and dual density units; and various hard disks
with capacities up to 20 Mbytes.

The terms single and dual headed refer to the number of
read/write heads in a unit. Most microcomputer systems
use single headed drives but dual headed drives are now
becoming more commonplace. A dual headed drive has
twice the capacity of a single headed unit because two disk
surfaces can be accessed rather than one.

Dual density describes the recording method used. In
single density mode each bit cell consists of a clock pulse
followed by a data pulse while in dual density recording
clock pulses may be omitted if the data pulse is repetitious.
Using this method more sectors can be written on a track
than in single density format. The recording method used is
dictated by the controller and the software, but with dual
density drives clock pulses may be omitted and the timing
is more critical, hence not all drives can be used for dual
density.

Eight inch drives are essentially the same as 5 1/4' drives
except they usually only come in one track size (77
tracks). As with the smaller units they come in both single
and dual density. Since their radius is larger they have
more sectors per track. Track capacities for 8' drives are
typically: 26 - 128 byte sectors / track; 15 - 256 byte
sectors / track; 8 - 512 byte sectors / track; 4 - 1024 byte
sectors / track.

Track capacities for 5 1/4' single density are: 20 - 128
byte sectors / track; 10 - 256 byte sectors / track; 5 - 512
byte sectors / track; and 2 - 1024 byte sectors / track. Dual
density 5 1/4' drives have capacities of: 32 - 128 byte
sectors / track; 18 - 256 byte sectors / track; 08 - 512 byte
sectors / track; and 4 - 1024 byte sectors / track.

Hard disks are too varied to classify. Basically a hard disk
has more capacity, faster access time, higher transfer rates,
but the disk itself may not be removable. Without a
removable disk file backup can be a serious problem, a
second hard disk is an expensive solution.

Shown below is a diagram of a 5 1/4' 35 track diskette.

Each diskette has 35, 40, 77, or 80 tracks depending on the
drive used. Each track has 10 sectors of 256 bytes.
Sector sizes can vary from 2 to 1024 bytes per sector. But
the software must be modified to handle anything other
than 256, because that is the size assumed by DOS. The
Model I uses a semi IBM compatible sector format. It is
not 100% compatible because track and sector numbers
on IBM diskettes are numbered from 1 not 0 as in
TRSDOS.

DOS uses a file directory to keep a record of file names
and their assigned tracks and sectors. The directory
occupies all 10 sectors of track number 11. It is composed
of three parts: a disk map showing available sectors (track
11, sector 1); a file name in use index that allows the

39

directory to be searched from an advanced starting point
(called the Hash Index Table track 11, sector 2); and the
directory sectors themselves (track 11 sector 3 thru track 11
sector 10).

 Track 11H Sector 0 GAT
 Sector

 Sector 1 HIT
 Sector

 Sector 2 Directory
 Sector

 .
 .

 Sector 9 Directory
 Sector

As well as the directory track there is one other special
area on a diskette. Track 0 sector 0 contains a system
loader used during the disk IPL sequence to load DOS.
The loader is read into RAM locations 4200 - 4300 by
the ROM IPL code which then passes control to it so that
the DOS can be loaded.

Disk Track Format

Before any diskette can be used it must be initialized using
either the FORMAT or COPY (BACKUP if using
TRSDOS) utility programs. Formatting initializes the
diskette which is originally magnetically erased. The
formatting operation writes the sector addresses for every
addressable sector plus synch bytes which will be used by
the controller to aid it locating specific addresses. In
addition the formatting operation specifies the sector size,
the number of sectors per track, and the physical order of
the sectors

Mini-floppies are usually formatted with 128,256,512, or
1024 byte sectors although other sizes may be formatted.
DOS uses the following track format:

Position Number of Bytes Contents

Index 14 FF
 6 00
 1 FE (Address marker)
 1 Track Number
 1 Head Number
One 1 Sector Number
Sector 1 Sector Length Code
 00 = 128 bytes
Ten per 01 = 256 bytes
track. 02 = 512 bytes
 03 = 1024 bytes
Sector 2 CRC
order is 11 FF : Sector 0 only, 12
0,5,1,6, 1 A0 : bytes of FF all others
2,7,3,8, 1 FA (Data Field Mark)
4,9. 256 Data
 2 CRC
 12 FF : Except the last (9)
 6 00 : which is followed by
 FE 130 bytes of FF

GAT Sector (Track 11 Sector 1)

Previously we mentioned the file directory system used by
DOS. It is based in part on the ability to dynamically assign

disk space on an as-needed basis. Conversely, it must be
possible to reuse space which has been released and is no
longer needed. The basic vehicle used for keeping track of
assigned and available disk space is the Granule Allocation
Table (GAT). Obviously, GAT data must be stored outside
the machine if a permanent record is to be maintained. The
GAT sector is used for this storage.

With the disk description there was a definition for a track
and sector. These terms will now be re-defined into the
DOS term granule. A granule is 5 sectors or half of a track.
It is the minimum unit of disk space that is allocated or de-
allocated. Granules are numbered from 0 to N, where N is a
function of the number of tracks on a diskette. A record of
all granules assigned is maintained in the GAT sector.
Recalling the disk dimensions mentioned earlier we can
compute the number of granules on a diskette as:

Granule = (Number of tracks * 10) / 5

Using a 35 track drive with the default DOS disk values of
10 sectors per track and 5 sectors per granule this gives 70
granules per diskette.

The GAT sector is divided into three parts. The first part is
the actual GAT table where a record of GAT's assigned is
maintained. Part two contains a track lock out table, and
part three system initialization information.

 Relative
 Byte 0 --> Granule Byte track 0

 .
 .

 Granule byte track 95

 60 --> Lockout byte for track 0

 .
 .

 Lockout byte for track 95

 CE -->
 Password (2 bytes)
 D0 -->
 Disk Name (8 bytes)
 D8 -->
 Creation Date (8 bytes)
 E0 -->
 AUTO procedure
 (32 bytes)
 F0 -->
 Not used

 Track available 1 1 1 1 1 1 0 0
 Locked out 1 1 1 1 1 1 1 1
 Lockout byte (1 per track)

 Granule 1 1 1 1 1 1 X X
 Allocation Sectors 0 - 4
 Byte (1 per track) :..... Sectors 5 - 9
 0 = Assigned 1 = Available

Hash Index Table (Track 11 Sector 2)

The Hash Index is a method used to rapidly locate a file
without searching all of the directory sectors until it is
found. Each file has a unique value computed from its
name. This value is called the Hash Code. A special sector
in the directory contains the Hash Codes for all active files

40

on a diskette. When a file is created, its Hash Code is
stored in the hash sector in a position that corresponds to
the directory for that file. Note, the hash position does not
give the file position, just its directory sector position.
When a file is KILL'd it code is removed from the hash
sector.

Files are located by first computing their hash value, the
Hash Index Sector is then searched for this value. If it is
not found then the file does not exist. If the code is found
then its position in the Hash Index Sector is used to
compute the address for the directory sector containing the
file name entry.

Hash code values range from 01 to FF. They are computed
from an 11 character file name that has been left justified,
blank filled. Any file name extension is the last three
characters of the name. The code used for computing a hash
value is shown below:

LD B,11 ; NO. OF CHARS TO NASH
LD C,0 ; ZERO HASH REGISTER

LOOP LD A,(DE) ; GET ONE CHAR OF NAME
INC DE ; BUMP TO NEXT CHAR
XOR C ; HASH REG. XOR. NEXT CHAR
RLCA ; 2*(NR. XOR. NC)
LD C,A ; NEW HR
DJNZ LOOP ; HASH ALL CHARS
LD A,C ; GET HASH VALUE
OR A ; DON'T ALLOW ZERO
JMP DONE ; EXIT, HASH IN A
INC A ; FORCE HASH TO 1

DONE . ; EXIT, HASH IN A

Space for codes in the Hash Sector is assigned sequen-
tially beginning at an arbitrary point. If the hash sector is
full a DOS error code of 1A is given otherwise the sector is
scanned in a circular manner until the first available (zero)
entry is found.

Not all words in the Hash Sector are used. Addresses in the
range 10 - 1F, 30 - 3F, 50 - 5F are excluded. Only those
addresses ending in the digits 00-07, 20-27 etc are assigned.
This speeds the computation of the directory sector number
from the hash code value address. The Hash Sector is
shown below.

Relative
Byte 00 --> Zero or Hash code

 01 --> .
 HASH codes for
 02 --> . files in sector
 2 of directory
 . track
 07 --> .

 10 --> Not Used

 1F -->
 HASH codes for
 20 --> . files in sector
 . 3 of directory
 track
 27 -->

 30 --> Not Used

 37 -->

 Sector 4
 F0 -->
 Not Used
 FF -->

Disk DCB

Each disk file has associated with it a 32 byte DCB which is
defined in the user's memory space. When the file is
opened the DCB must contain the file name, a name
extension if any, and an optional drive specification. As
part of the OPEN processing the DCB is initialized for
READ and WRITE operations by copying portions of the
directory entry into the DCB. After initialization the DCB
appears as shown.

Relative Byte 0 Open flag
 1 Access flags
 3 Reserved
 4 Sector buffer addr
 5
 6 Next record addr
 7 Drive number
 8 Overflow pointer
 9 EOF address
 A Record size
 B Next record #
 C
 D Number of records
 E 1st
 F GAP
 10 Total granules
 11 thru 1st GAP
 12 2nd
 13 GAP
 14 Total granules
 15 thru 2nd GAP
 16 3rd
 17 GAP
 18 Total granules
 19 thru 3rd GAP
 1A 4th
 1B GAP
 1C Total granules
 1D thru 4th GAP
 1E End of GAP
 1F Flag

where

BYTE 0 bits 0-6 : reserved
 bit 7 : 0 = file not opened
 1 = file opened

BYTE 1 bits 0-2 : access permission flag.
 bit 3 : reserved
 bit 4 : 0 = sector buffer available
 1 = flush sector buffer before using
 bit 5 : 0 = look for record in current buffer
 1 = unconditionally read next sector
 bit 6 : reserved
 bit 7 : 0 = sector I/O
 1 = logical record I/O

BYTE 2 reserved
BYTE 3 - 4 sector buffer address in LSB/MSB order
BYTE 5 pointer to next record in buffer
BYTE 6 drive number
BYTE 7 bits 0-3 sector number - 2 of overflow entry
 bits 3-4 reserved
 bits 5-7 offset/16 to primary entry in directory
BYTE 8 pointer to end of file in last sector
BYTE 9 record size
BYTE 10 - 11 next record number in LSB/MSB format
BYTE 12 - 13 number of records in file
BYTE 14 - 15 first GAP
BYTE 16 - 17 total granules assigned thru first
BYTE 18 - 19 second GAP
BYTE 20 - 21 total granules assigned thru second GAP
BYTE 22 - 23 third GAP
BYTE 24 - 25 total granules assigned thru third GAP
BYTE 26 - 27 fourth GAP
BYTE 28 - 29 total granules assigned thru fourth GAP
BYTE 30 - 31 end of GAP string flag (FFFF)

41

Directory Sector (Track 11 Sector 3 -
Track 11 Sector 9)

Directory sectors contain file descriptions used when
accessing a disk file. These descriptions contain among
other things the file name, passwords, and a list of the disk
addresses occupied by the file. The directory sectors are
divided into eight fixed-length partitions of thirty two bytes
each. Each partition contains one file description. Empty
partitions are indicated by a flag in the first byte of the
partition.

Space in the directory is assigned when a file is initially
created using a DOS OPEN or INIT call. There is no
particular order in the way space is assigned because the
directory sector number used is determined by a hash code
derived from the file name. Partition space in the sector is
assigned in sequential order.

Relative
Byte 0 Entry # 1

 20 -------------
 Entry # 2

 E0 -------------
 Entry # 8

Relative Byte 0 Access control
 1 Overflow
 3 Reserved
 4 EOF byte offset
 5 Record length
 6 File name
 7 .
 8 .
 9 .
 A .
 B .
 C .
 D .
 E Name Extension
 F .
 10 .
 11 Update password
 12 .
 13 Access password
 14 EOF sector
 15 Track
 16 Number of GAP1
 17 Granules
 18 . GAP2
 19 .
 1A . .
 1B . .
 1C . .
 1D . .
 1E . GAP5
 1F .

BYTE 0 bits 0-2 = file access control flags
 000 - unrestricted access
 001 - KILL/RENAME/WRITE/READ/EXECUTE access
 010 - RENAME/WRITE/READ/EXECUTE access
 011 - reserved
 100 - WRITE/READ/EXECUTE access
 101 - READ/EXECUTE access
 110 - EXECUTE access only
 111 - restricted file no access

 bit3 = 0, file is displayable. 1, file is invisible.
 bit4 = 0, this entry is available. 1, entry is used.
 bit5 = reserved
 bit6 = 0, user file. 1, SYSTEM file.
 bit7 = 0, primary entry. 1, overflow entry.

BYTE 1 used for overflow entries only.
 Bits 0 - 3 byte offset/10 in primary sector to the entry
 for this file
 Bits 4 - 7 sector number - 2 of primary entry.
BYTE 2 Reserved
BYTE 3 Bits 0 - 7 byte offset to end of file in last sector.
BYTE 4 Bits 0 - 7 record length.

BYTES 5 - 12 File name in ASCII, left justified, blank filled.
BYTES 13 - 15 File name extension in ASCII left justified, blank filled.
BYTES 16 - 17 Update password (encoded).
BYTES 18 - 19 Access password (encoded).
BYTES 20 - 21 Last sector number in file. LSB/MSB order.
BYTES 22 - 31 Five two-byte entries called Granule Assignment
 Pairs (GAPs). Each GAP consists of a starting track number
 (byte 1) and a count of the number of consecutively
 assigned granules (byte 2). A string of these GAP's in
 proper order define the disk addresses assigned
 to a file. The end of a GAP string will be signaled by
 a FF in bytes 1 and 2 if there are no more than five
 GAP assigned, or an FE followed by the disk address of
 another directory sector containing the remainder of
 the GAP's. The directory entry containing the overflow
 GAP's is called an overflow entry and contains only the
 continuation of the GAP string. There is no limit to the
 number of overflow entries that may be assigned.
 GAP bytes are formatted as shown below

1st Byte: Bits 0 - 7 contain one of the following:
 a) If the contents of 1st byte is less than FE it is assumed
 to be a track number.
 b) An FF if there are no more GAP's. This is the end of a GAP string
 c) An FE if there are more GAP entries in an overflow sector.
 The next byte contains the overflow sector address.

2nd Byte: The interpretation of this byte depends on the contents of
 the preceding byte. If = FF, then this byte is not contains an FF.
 If preceding byte = FE, then:
 holds in bits 0 - 3 the sector number - 2 of overflow sector.
 bits 4 - 7 the byte offset/10 in the overflow sector to the
 entry with the remainder of the GAPs'.
 If preceding byte < FE, then this byte has in bits 0 - 3 the number
of
 consecutive granules minus 1. This value varies from 0 up to 1F.
 Bit 4 = a flag indicating whether the first or second granule in
 the starting track has been assigned. If bit 4 = 0, then the
 first granule was assigned. if bit 4 = 1, then the second granule
 starts with sector.
5) was assigned.

 Following is an example of a GAP string:

 byte 22: 23 file starts on track 23
 byte 23: 06 there are 7 granules assigned
 TRK (23) S(0-9), TRK (24) S(0-9)
 TRK (25) S(0-9), TRK (26) S(0-4)

 byte 24: 15 file continues on track 15
 byte 25: 23 for 4 granules
 TRK (15) S(5-9), TRK (16) S(0-9)
 TRK (17) S(0-4)

 byte 26: FF end of GAP string
 byte 27: FF end of GAP string

42

Chapter 4

Addresses & Tables

 Address
 (Hex)

0000 -->

 Level II ROM
 (Internal Tables)

3C00 --> - - - - - - - - - - - -
 I/O Addresses
4000 --> - - - - - - - - - - - -

 Communications
 Region
 (External Tables)

4200 -----------------------
 DOS Nucleus
5200 -----------------------
 Disk BASIC
6700 -----------------------
 Program
 Statement
 Table

 Variables List Table
 Simple Variables
 - - - - - - - - - - - -
 Subscripted Variables

 Free Space

 Stack

 String Area

Level II Internal Tables

Internal tables are those lists and tables that are resident in
the Level II system. Since they are ROM resident their
contents and address are fixed. They are used by BASIC for
syntax analysis, during expression evaluation, for data
conversions, and while executing such statements as FOR
and IF.

Reserved Word List (1650 - 1821)

This table contains all of the word reserved for use by the
BASIC interpreter. Each entry contains a reserved word
with bit 8 turned on. During the Input Phase the incoming
line is scanned for words in this list. Any occurrence of one
is replaced by a token representing it. The token is
computed as 80 plus the index into the table where the word
was found. A list of those words and their token values
follows:

 Word Token Word Token Word Token

 END..........80 FOR.......81 RESET.....82
 SET..........83 CLS.......84 *CMD.......85
 RANDOM.......86 NEXT......87 DATA......88
 INPUT........89 DIM.......8A READ......8B
 LET..........8C GOTO......8D RUN.......8E
 IF...........8F RESTORE...90 GOSUB.....91
 RETURN.......92 REM.......93 STOP......94
 ELSE.........95 TRON......96 TROFF.....97
 DEFSTR.......98 DEFINT....99 DEFSNG....9A
 DEFDBL.......9B *LINE......9C EDIT......9D
 ERROR........9E RESUM.....9F OUT.......A0
 ON...........A1 *OPEN......A2 *FIELD.....A3
*GET..........A4 *PUT.......A5 *CLOSE.....A6
*LOAD.........A7 *MERGE.....A8 *NAME......A9
*KILL.........AA *LSET......AB *RSET......AC
*SAVE.........AD SYSTEM....AE LPRINT....AF
*DEF..........B0 POKE......B1 PRINT.....B2
 CONT.........B3 LIST......B4 LLIST.....B5
 DELETE.......B6 AUTO......B7 CLEAR.....B8
 CLOAD........B9 CSAVE.....BA NEW.......BB
 TAB(.........BC TO........BD *FN........BE
 USING........BF VARPTR....C0 USR.......C1
 ERL..........C2 ERR.......C3 STRING$...C4
 INSTR........C5 POINT.....C6 *TIMES.....C7
 MEM..........C8 INKEY$....C9 THEN......CA
 NOT..........CB STEP......CC +.........CD
 -............CE *.........CF /.........D0
 UP ARROW.....D1 AND.......D2 OR........D3
 >............D4 =.........D5 <.........D6
 SGN..........D7 INT.......D8 ABS.......D9
 FRE..........DA INP.......DB POS.......DC
 SQR..........DD RND.......DE LOG.......DF
 EXP..........E0 COS.......E1 SIN.......E2
 TAN..........E3 ATN.......E4 PEEK......E5
*CVI..........E6 *CVS.......E7 *CVD.......E8
*EOF..........E9 *LOC.......EA *LOF.......EB
*MKI$.........EC *MKS$......ED CINT......EF
 CSNG.........F0 CDBL......F1 FIX.......F2
 LEN..........F3 STR$......F4 VAL.......F5
 ASC..........F6 CHR$......F7 LEFT$.....F8
 RIGHT$.......F9 *MID$......FA '.........FB

* Disk BASIC tokens

43

Precedence Operator Values (189A - 18A0)

This table contains numeric values used to determine the
order of arithmetic operations when evaluating an
expression. As the expression is scanned each operator/
operand pair plus the precedence value for the previous
operand is stored on the stack. When an operator of higher
precedence than the preceding one is found the current
operation is performed giving an intermediate value that is
carried forward on the stack. The values shown for
relational operations are computed rather than being
derived from a table look-up.

Operator Function Precedence Value

UP ARROW (Exponent) 7F
* (Multiplication) 7C
/ (Division) 7C
+ (Addition) 79
- (Subtraction) 79
ANY (Relational) 64
AND (Logical) 50
OR (Logical) 46
<= (Relational) 06
<> (Relational) 05
>= (Relational) 03
< (Relational) 04
= (Relational) 02
> (Relational) 01

Arithmetic Routines (18AB - 18C8)

There are really three tables back-to-back here. They are
used during expression evaluation to compute inter-
mediate values when a higher precedence operator is found.

Arithmetic Routine Addresses

Single Double
Integer Precision Precision String

Addition 0BD2 0716 0C77 298F
Subtraction 0BC7 0713 0C70 NONE
Multiplication 0BF2 0847 0DA1 NONE
Division 2490 08A2 0DE5 NONE
Comparison 0A39 0A0C 0A78 NONE

Data Conversion Routines (18A1 - 18AA)

These routines convert the value in WRA1 from one mode
to another. They are called by the expression evaluator
when an intermediate computation has been made, and the
result needs to be make compatible with the rest of the
expression.

Conversion Routine Addresses

Destination Mode Address

String 0AF4
Integer 0A7F
Single Precision 0AB1
Double Precision 0ADB
 Verb Action Addresses

Verb Action Routines (1822 - 1899)

There are two Verb Action Address Lists. The first one is
used by the execution driver when beginning execution of a
new statement. It contains address of verb routines for the
tokens 80 - BB. The first token of the statement is used as
an index in the range of 0 - 60 into the table at 1822 - 1899
to find the address of the verb routine to be executed. If the
statement does not begin with a token control goes to
assignment statement processing. The second table contains
the addresses of verb routines which can only occur on the
right side of an equals sign. If during the expression
evaluation stage a token in the range of D7 - FA is
encountered it is used as an index into the table at 1608 -
164F, where the address of the verb routine to be executed
is found. There is no address list for the tokens BC - D6
because they are associated with and follow other tokens
that expect and process them.

Table Address 1B22 - 1B99)

Token Verb Address Token Verb Address

80....END.......1DAE 81....FOR........1CA1
82....RESET.....0138 83....SET........0135
84....CLS.......01C9 85....CMD........4135
86....RANDOM....01D3 87....NEXT.......22B6
88....DATA......1F05 89....INPUT......219A
8A....DIM.......2608 8B....READ.......21EF
8C....LET.......1F21 8D....GOTO.......1EC2
8E....RUN.......1EA3 8F....IF.........2039
90....RESTORE...1D91 91....GOSUB......1EB1
92....RETURN....1EDE 93....REM........1F07
94....STOP......1DA9 95....ELSE.......1F07
96....TRON......1DF7 97....TROFF......1DF8
98....DEFSTR....1E00 99....DEFINT.....1E03
9A....DEFSNG....1E06 9B....DEFDBL.....1E09
9C....LINE......41A3 9D....EDIT.......2E60
9E....ERROR.....1FF4 9F....RESUME.....1FAF
A0....OUT.......2AFB A1....ON.........1FC6
A2....OPEN......4179 A3....FIELD......417C
A4....GET.......417F A5....PUT........4182
A6....CLOSE.....4185 A7....LOAD.......4188
A8....MERGE.....418B A9....NAME.......418E
AA....KILL......4191 AB....LSET.......4197
AC....RSET......419A AD....SAVE.......41A0
AE....SYSTEM....02B2 AF....LPRINT.....2067
B0....DEF.......41B5 B1....POKE.......2CB1
B2....PRINT.....206F B3....CONT.......1DE4
B4....LIST......2B2E B5....LLIST......2B29
B6....DELETE....2BC6 B7....AUTO.......2008
B8....CLEAR.....1E7A B9....CLOAD......2C1F
BA....CSAVE.....2BF5 BB....NEW........1B49

(Table Address 16DB - 164F)

TOKEN VERB Address TOKEN VERB Address

D7....SGN.......098A D8....INT........0B37
D9....ABS.......0977 DA....FRE........27D4
DB....INP.......2AEF DC....POS........27A5
DD....SQR.......13E7 DE....RND........14C9
DF....LOG.......0809 E0....EXP........1439
E1....COS.......1541 E2....SIN........1547
E3....TAN.......15A8 E4....ATN........15BD
ES....PEEK......2CAA E6....CVI........4152
E7....CVS.......4158 E8....CVD........415E
E9....EOF.......4161 EA....LOC........4164
EB....LOF.......4167 EC....MKI$.......416A
ED....MKS$......416D EE....MKD$.......4170
EF....CINT......0A7F F0....CSNG.......0AB1
F1....CDBL......0DAB F2....FIX........0B26
F3....LEN.......2A03 F4....STR$.......2836
F5....VAL.......2AC5 F6....ASC........2A0F
F7....CHR$......2A1F F8....LEFT$......2A61
F9....RIGHT$....2A91 FA....MID$.......2A9A

44

Error Code Table (18C9- 18F6)

Error codes printed under Level II are interpreted by
using the error number as in index into a table of two letter
error abbreviations. The format of the error code table is
as follows:

Error Code Cause Originating
Number Address

 0 NF NEXT WITHOUT FOR 22C2
 2 SN SYNTAX ERROR (NUMEROUS DA,2C7,EEF

CAUSES) 1C9E,1D32,1E0E
1E66,2022,235B
2615,2AE9,2DE2

 4 RG RETURN WITHOUT GOSUB 1EEC
 6 OD OUT OF DATA (READ) 2214,22A2
 8 FC NUMEROUS 1E4C
 A OV NUMERIC OVERFLOW 7B2
 C OM OUT OF MEMORY 197C
 E UL MISSING LINE NUMBER 1EDB
10 BS INDEX TOO LARGE 273F
12 DD DOUBLY DEFINED SYMBOL 2735
14 0/ DIVISION BY 0 8A5,DE9,1401
16 ID INPUT USE INCORRECT 2833
18 TM VARIABLE NOT A STRING AF8
1A OS OUT OF STRING SPACE 28DD
1C LS STRING TOO LONG 29A5
1E ST LITERAL STRING POOL 28A3

TABLE FULL
20 CN CONTINUE NOT ALLOWED 1DEB
22 NR RESUME NOT ALLOWED 198C
24 UE INVALID ERROR CODE 2005
26 UE INVALID ERROR CODE 2005
28 MO OPERAND MISSING 24A2
2A FD DATA ERROR ON CASSETTE 218C
2C L3 DISK BASIC STATEMENT 12DF

ATTEMPTED UNDER LEVEL II

Level II External Tables

External tables used by Level II are those which are kept in
RAM. They are kept there because their contents and size,
as well as their address, may change. A pointer to each of
the External tables is maintained in the Communications
Region.

Mode Table (4101-411A)

This table is used by the BASIC interpreter to determine the
data type mode (integer, string, single or double precision)
for each variable. Although it never moves its contents
may change when a DEF declaration is encountered, and
therefore it must be in RAM. It is the only RAM table with
a fixed address and consequently there is no pointer to it in
the Communications Region. The table is 26 decimal
words long and is indexed by using the first character of a
variable name as an index. Each entry in the table contains
a code indicating the variable type e.g. 02 - integer, 03 -
string, 04 - single precision, 08 - double precision.

The mode table is initialized during the IPL sequence to 04
for all variables. It appears as:

Address Letter Type Address Letter Type

 4101.......A........04 4102........B........04
 4103.......C........04 4104........D........04
 4105.......E........04 4106........F........04
 4107.......G........04 4108........H........04
 4109.......I........04 410A........J........04
 410B.......K........04 410C........L........04
 410D.......N........04 410E........N........04
 410F.......0........04 4110........P........04
 4111.......Q........04 4112........K........04
 4113.......S........D4 4114........T........04
 4115.......U........04 4116........V........04
 4117.......W........04 4118........X........04
 4119.......Y........04 411A........Z........04

Program Statement Table (PST)

The Program Statement Table contains BASIC statements
entered as a program. Since it is RAM resident and its
origin may change from system to system there is a pointer
to it in the Communications Region at address 40A4. As
each line is entered it is tokenized and stored in the PST.
Statements are stored in ascending order by line number
regardless of the order in which they are entered. Each
entry begins with a two byte pointer to the next line
followed by a two byte integer equivalent of the line
number then the text of the BASIC statement. The body of
the statement is terminated with a single byte of zeros
called the End Of Statement or EOS flag. The ending
address of the PST is contained in 40F9. It is terminated
by two bytes of zeros.

Program Statement Table (PST)

 40A4 --> 2 Byte addr of
 next statement
 2 byte line number
 in integer form

 BASIC statement
 in Tokenized
 form

 EOS Flag
 2 byte addr of
 next statement

 2 byte line number
 in integer form

 BASIC statement
 in Tokenized
 form

 EOS Flag
 2 byte addr of
 next statement

Shown below are two statements and their representation
in the PST:

100 A = COS (1.6)
110 IF A>.5 THEN 500

45

Variable List Table (VLT)

This table contains all variables assigned to a BASIC
program. Internally the table is divided into two sections.
Section one contains entries for all non-subscripted and
string variables while section two contains the values for all
subscripted variables. Like the PST the VLT is RAM
resident and it has two pointers in the Communications
Region. Location 40F9 contains the address of the first
section, and 40FB contains the address of section two. The
starting address of the VLT is considered as the end of the
PST.

Regardless of which section a variable is defined in, the
first three bytes of each entry have the same format. Byte
one has a type code (2,3,4 or 8), which doubles as the
length of the entry. Bytes two and three contain the
variable name in last/first character order. Following this is
the value itself in LSB/MSB order, or if it as a string
variable a pointer to the string in the String Area.

Section two contains all dimensioned arrays. These entries
have the same three byte header followed by a another
header which defines the extents of the array. The array is
stored after the second header in column-major order.

Variables are assigned space in the VLT as they are
encountered (in a DIM statement or in any part of an
assignment statement). There is no alphabetical ordering.
Because space is assigned on demand it is possible for
previously defined variables to be moved down. For
example, if A, B, and C(5) were defined followed by D,
C(5) would be moved down because section one would be
increased for D. This would force section two to be moved.

(40F9) --> Simple &
 String
 Variables

(40FB) --> Dimensioned
 Variables

Arrays are stored in column-major order. In that order the
left most index varies the fastest. For example the array
A(2,3) would be stored in memory as:

A(0,0)
A(1,0)
A(2,0)

.

.

.
A(0,3)
A(1,3)
A(2,3)

An index for any element can be computed using the
formula:

INDEX = (((LRI*0)+URI)*LMI)+UMI)*LLI)+ULI

where

LRI = limit of right index
LMI = limit of middle index
LLI = limit of left index

URI = user's current right index
UMI = user's current middle index
ULI = user's current left index

The code used to compute these indexes may be found at
address 2595 to 27C8.

46

Literal String Pool (40D2)

This table is used by BASIC to keep track of intermediate
strings which result from operations such as string
addition or some print operations. The table has eleven
three byte entries which are assigned sequentially. The start
of the table has a two byte pointer to the next available
entry. It is initialized during IPL to point to the head of the
list.

Each entry contains the length and the address of a string
which is usually (although not necessarily) in the PST.
Entries are assigned in a top down fashion and released in a
bottom up manner. A pointer to the next available entry is
kept in 40B3. If the table overflows an ST error is given.

 (40B3) --> Address of next
 available entry
 String length
 Address of
 String

 FFCC -->

 Literal String Pool

Communications Region (4000 - 4200)

The Communications Region has been defined as RAM
locations 4000 to 4200. These addresses give the definition
an air of precision that is not warranted. In reality only a
portion of the area is used in the sense given to the term
Communications Region. Those boundaries were chosen
because they represent the end of ROM and the
approximate starting address of DOS in RAM. In a Level II
system without disk there would be no DOS and the RAM
tables such as the PST, VLT, etc. would begin at a much
lower address. But they would still be above 4200 so it is
safe to think of that region as reserved.

The Communications Region has many uses other than
those mentioned so far. The following diagram shows the
major areas discussed up to this point. Following it is a
description of all bytes in the Communications Region and
their known use.

Communications Region

4000 -->
 RST Vectors
4015 --> ----------------------------
 DCB's
4040 --> ----------------------------
 Used By DOS
4080 --> ----------------------------
 Division Support Routine
408E --> ----------------------------
 Used by
 Level II
4101 --> ----------------------------
 Mode Table
411B --> ----------------------------
 Used by
 Level II
4130 --> ----------------------------
 System Print Buffer
414A --> ----------------------------
 Used by Level II
4152 --> ----------------------------
 Disk BASIC
 Vectors
41A3 --> ----------------------------
 DOS Exit
 Vectors
41E5 --> ----------------------------

4200 -->

Address Level II DOS Description
 Contents Contents

4000 JP 1C96 RST 8 VECTOR
4003 JP 1D78 RST 10 VECTOR
4006 JP 1C90 RST 18 VECTOR
4009 JP 25D9 RST 20 VECTOR
400C RET JP 4BA2 RST 28 DOS REQUEST PROCESSING
400F RET JP 44B4 LOAD DEBUG (LD A,XX/RST 28)
4012 DI/RET CALL 4518 RST 38 INTERRUPT SERVICE CALL
4015 KEYBOARD DCB (8 BYTES)
401D VIDEO DCB (8 BYTES)
4025 PRINTER DCB (8 BYTES)
402D JP 5000 JP 4400 MAKE SYS1 (10) DOS REQUEST
4030 RST 0 LD A,A3 DOS REQUEST CODE FOR SYS1
4032 LD A,0 RST 28 WRITE 'DOS READY' MSG
4033 RET JP 44BB CALL DEVICE DRIVER ALA DOS
4036 KEYBOARD WORK AREA USED
 . BY SYS0 AND KEYBOARD DRIVER
403D DISPLAY CONTROL WORD (U/L CASE)
403E USED BY DOS
403F USED BY DOS
4040 SYSTEM BST'S
4041 SECONDS
4042 MINUTES
4043 HOURS
4044 YEAR
4045 DAY
4046 MONTH
4047 LOAD ADDRESS FOR SYSTEM UTILITIES
 2 BYTES, INITIALIZED TO 5200 BY
 SYS0/SYS
4049 MEMORY SIZE. COMPUTED BY SYS0/SYS
404A RESERVED
4048 CURRENT INTERRUPT STATUS WORD
404C INTERRUPT SUBROUTINE MASK
404D RESERVED (INTERRUPT BIT 0)
404F RESERVED (INTERRUPT BIT 1)
4051 COMMUNICATIONS
 INTERRUPT SUBROUTINE
4053 RESERVED (INTERRUPT BIT 3)
4055 RESERVED (INTERRUPT BIT 4)
4057 RESERVED (INTERRUPT BIT 5)
4059 45F7 ADDR OF DISK INTERRUPT ROUTINE
4058 4560 ADDR OF CLOCK INTERRUPT ROUTINE
4050 STACK DURING IPL
4070 START OF STACK DURING ROM IPL
407E RESERVED
407F RESERVED
4080 SUBTRACTION ROUTINE USED BY
 DIVISION CODE. CODE IS MOVED
 FROM '18F7' - '1904' DURING
 NON-DISK IPL OR BY BASIC
 UTILITY FOR DISK SYSTEMS

47

408E CONTAINS ADDRESS OF USER SUBROUTINE
4090 RANDOM NUMBER SEED
4093 IN A,00
4096 OUT A,00
4099 HOLDS LAST CHAR TYPED AFTER BREAK
409A FLAG (SIGNALS RESUME ENTERED)
409B NO. OF CHARS. IN CURRENT PRINT LINE
409D OUTPUT DEVICE CODE (1-PRINTER
 0-VIDEO, MINUS 1-CASSETTE)
409D SIZE OF DISPLAY LINE (VIDEO)
409E SIZE OF PRINT LINE
409F RESERVED
40A0 ADDR OF STRING AREA BOUNDARY
40A1 CURRENT LINE NUMBER
40A4 ADDR OF PST
40A5 CURSOR POSITION
40A7 ADDR OF KEYBOARD BUFFER.
40A9 0 IF CASSETTE INPUT, ELSE NON-ZERO
40AA RANDOM NUMBER SEED
40AB VALUE FROM REFRESH REGISTER
40AC LAST RANDOM NUMBER (2 BYTES)
40AE FLAG: 0 - LOCATE NAMED VARIABLE
 -1 - CREATE ENTRY FOR
 NAMED VARIABLE
40AF TYPE FLAG FOR VALUE IN WRA1.
 2 - INTEGER
 3 - STRING
 4 - SINGLE PRECISION
 8 DOUBLE PRECISION
40B0 HOLDS INTERMEDIATE VALUE DURING
 EXPRESSION EVA
40B1 MEMORY SIZE
40B2 RESERVED
40B3 ADDR OF NEXT AVAILABLE LOC. IN LSPT.
40B5 LSPT (LITERAL STRING POOL TABLE)
40D2 END OF LSPT
4003 THE NEXT 3 BYTES ARE USED TO HOLD
 THE LENGTH AND ADDR OF A STRING WHEN
 IT IS MOVED TO THE STRING AREA.
40D6 POINTER TO NEXT AVAILABLE
 LOC. IN STRING AREA
40D8 1: INDEX OF LAST BYTE EXECUTED IN
 CURRENT STATEMENT.
 2: EDIT FLAG DURING PRINT USING
40DA LINE NO. OF LAST DATA STATEMENT
40DC FOR FLAG (1 = FOR IN PROGRESS
 0 = NO FOR IN PROGRESS)
40DD 0 DURING INPUT PHASE, ZERO OTHERWISE
40DE READ FLAG: 0 = READ STATEMENT ACTIVE
 1 = INPUT STATEMENT ACTIVE
 ALSO USED IN PRINT USING TO HOLD
 SEPARATOR BETWEEN STRING AND VARIABLE
40DF HOLDS EXECUTION ADDR FOR PGM LOADED
 WITH DOS REQUEST
40E1 AUTO INCREMENT FLAG 0 = NO AUTO MODE
 NON-ZERO HOLDS NEXT LINE
40E2 CURRENT LINE NUMBER IN BINARY
 (DURING INPUT PHASE)
40E4 AUTO LINE INCREMENT
40E6 DURING INPUT: ADDR OF CODE STRING
 FOR CURRENT STATEMENT.
 DURING EXECUTION: LINE NO. FOR CURRENT
 STATEMENT
40E8 DURING EXECUTION: HOLDS STACK POINTER
 VALUE WHEN STATEMENT EXECUTION BEGINS
40EA LINE NO. IN WHICH ERROR OCCURRED
40EC LINE NO. IN WHICH ERROR OCCURRED
40ED LAST BYTE EXECUTED IN CURRENT STATEMENT
40EF ADDR OF POSITION IN ERROR LINE
40F0 ON ERROR ADDRESS
40F2 FLAG. FF DURING ON ERROR PROCESSING
 CLEARED BY RESUME ROUTINE
40F3 ADDR OF DECIMAL POINT IN PBUFF
40F5 LAST LINE NUMBER EXECUTED
 SAVED BY STOP/END
40F7 ADDR OF LAST BYTE EXECUTED DURING
 ERROR
40F9 ADDR OF SIMPLE VARIABLES
40FB ADDR OF DIMENSIONED VARIABLES
40FD STARTING ADDRESS OF FREE SPACE LIST
40FF POINTS TO BYTE FOLLOWING LAST CHAR
 READ DURING READ STMNT PROCESSING
4101 VARIABLE DECLARATION LIST. THERE
 ARE 26 ENTRIES (1 FOR EACH LETTER
 OF THE ALPHABET) EACH ENTRY CONTAINS
 A CODE INDICATING DEFAULT MODE FOR
 VARIABLES STARTING WITH THAT LETTER
411A END OF DECLARATION LIST
411B TRACE FLAG (0 = NO TRACE,
 NON-ZERO = TRACE)

411C TEMP STORAGE USED BY NUMERIC ROUTINES
 WHEN UNPACKING A FLOATING POINT
 NUMBER. USUALLY IT HOLDS THE LAST
 BYTE SHIFTED OUT OF THE LSB POSITION
411D WRA1 - LSB OF DBL PREC. VALUE
411E WRA1 - DBL PREC. VALUE
415F WRA1 - DBL PREC VALUE
4120 WRA1 - DBL PREC VALUE
4121 WRA1 - LSB OF INTEGER SINGLE PREC
4122 WRA1
4123 WRA1 - MSB FOR SINGLE PREC
4124 WRA1 - EXPONENT FOR SINGLE PREC
4125 SIGN OF RESULT DURING MATH &
 ARITHMETIC OPERATIONS
4126 BIT BUCKET USED DURING DP ADDITION
4127 WRA2 - LSB
4128 WRA2
4129 WRA2
412A WRA2
422B WRA2
412C WRA2
412D WRA2 - MSB
412E WRA2 - EXPONENT
412F NOT USED
4130 START OF INTERNAL PRINT BUFFER
 USED DURING PRINT PROCESSING
4149 LAST BYTE OF PRINT BUFFER
414A TEMP. STORAGE USED BY DBL PRECISION
 DIVISION ROUTINE. HOLDS DIVISOR
4151 END OF TEMP AREA

*
* LOCATIONS 4152 THRU 41E2 CONTAIN DOS EXITS AND DISK BASIC EXITS. ON
* NON-DISK SYSTEMS THESE LOCATIONS ARE INITIALIZED TO RETURNS (RET'S)
* WHILE ON DISK BASED SYSTEMS THEY WILL BE INITIALIZED AS SHOWN.
*

4152 ...RET..JP 5E46 DISK BASIC EXIT (CVI)
4155 ...RET..JP 558E DISK BASIC EXIT (FN)
4158 ...RET..JP 5E49 DISK BASIC EXIT (CVS)
415E ...RET..JP 5655 DISK BASIC EXIT (DEF)
415K ...RET..JP 5E4C DISK BASIC EXIT (CVD)
4161 .. RET..JP 61EB DISK BASIC EXIT (EOF)
4164 ...RET..JP 6231 DISK BASIC EXIT (LOC)
4167 ...RET..JP 6242 DISK BASIC EXIT (LOF)
416A ...RET..JP 5E20 DISK BASIC EXIT (MKI$)
4160 ...RET..JP 5E30 DISK BASIC EXIT (MKS$)
4170 ...RET..JP 5E33 DISK BASIC EXIT (MKD$)
4173 ...RET..JP 56C4 DISK BASIC EXIT (CMD)
4176 ...RET..JP 5714 DISK BASIC EXIT (TIME$)
4179 ...RET..JP 6349 DISK BASIC EXIT (OPEN)
417C ...RET..JP 60AB DISK BASIC EXIT (FIELD)
417F ...RET..JP 627C DISK BASIC EXIT (GET)
4182 ...RET..JP 627B DISK BASIC EXIT (PUT)
4185 ...RET..JP 606F DISK BASIC EXIT (CLOSE)
4188 ...RET..JP 5F7B DISK BASIC EXIT (LOAD)
418B ...RET..JP 600B DISK BASIC EXIT (MERGE)
418E ...RET..JP 6346 DISK BASIC EXIT (NAME)
4191 ...RET..JP 63C0 DISK BASIC EXIT (KILL)
4194 ...RET..JP 58B7 DISK BASIC EXIT (&)
4197 ...RET..JP 60E6 DISK BASIC EXIT (LIST)
419A ...RET..JP 60E5 DISK BASIC EXIT (RSET)
419D ...RET..JP 582F DISK BASIC EXIT (INSTR)
41A0 ...RET..JP 6044 DISK BASIC EXIT (SAVE)
41A3 ...RET..JP 5756 DISK BASIC EXIT (LINE)
41A6 ...RET..JP 5679 DISK BASIC EXIT (USR)

*
*
THE FOLLOWING ADDRESSES ARE THE DOS EXIT ADDRESSES.
*
*

41A9 ...RET..JP XXXX DOS EXIT FROM
41AC ...RET..JP 5FFC DOS EXIT FROM 1A1C
41AF ...RET..JP 598E DOS EXIT FROM 0368
41B2 ...RET..JP 6033 DOS EXIT FROM ROM address 1AA1
41B5 ...RET..JP 5BD7 DOS EXIT FROM ROM address 1AEC
41B8 ...RET..JP 5B8C DOS EXIT FROM ROM address 1AF2
41BB ...RET..JP 60A1 DOS EXIT FROM ROM address 1B8C
41BE .. RET..JP 577C DOS EXIT FROM ROM address 2174
41C1 .. RET..JP 59CD DOS EXIT FROM ROM address 032C
41C4 .. RET..JP XXXX DOS EXIT FROM ROM address 0358
41C7 ...RET..JP 5F78 DOS EXIT FROM ROM address 1EA6
41CA ...RET..JP 5A15 DOS EXIT FROM ROM address 206F
41CD ...RET..JP 5B9A DOS EXIT FROM ROM address 2103
41D0 ...RET..JP 5B99 DOS EXIT FROM ROM address 2103
41D3 ...RET. JP 5B65 DOS EXIT FROM ROM address 2108
41D6 ...RET..JP 5784 DOS EXIT FROM ROM address 219E
41DC ...RET..JP 5E63 DOS EXIT FROM ROM address 222D
41DF ...RET..JP 579C DOS EXIT FROM ROM address 2278
41E2 ...RET..JP 5B51 DOS EXIT FROM ROM address 0282

48

DCB Descriptions

The keyboard, video, and printer DCB'S (Device Control
Blocks) are defined in ROM at locations 06E7 - 06FF. They
are moved to the address show in the Communications
Region during the IPL sequence.

Video DCB (Address 401D)

Relative Byte

0 0 0 0 0 0 1 1 1 Device type (7)
1 0 1 0 0 1 0 0 0 Driver address
2 0 0 0 0 0 1 0 1 (0458)
3 0 0 0 0 0 0 0 0 Next character address
4 0 0 1 1 1 1 0 0 3C00 =< X < 3FFF
5 0 0 0 0 0 0 0 0 0/value 0 = Suppress cursor
6 0 1 0 0 0 1 0 0 value = last char under cursor
7 0 1 0 0 1 1 1 1 RAM buffer addr (4F44)

Keyboard DCB (Address 4015)

Relative Byte

0 0 0 0 0 0 0 0 1 Device type (1)
1 1 1 1 0 0 0 1 1 Driver address
2 0 0 0 0 0 0 1 1 (03E3)
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 Not Used
5 0 0 0 0 0 0 0 0_
6 0 1 0 0 1 0 1 1 RAM buffer
7 0 1 0 0 1 0 0 1 address (494B)

Printer DCB (Address 4025)

Relative Byte

0 0 0 0 0 0 1 1 0 Device type (6)
1 1 0 0 0 1 1 0 1 Driver address
2 0 0 0 0 0 1 0 1 (058D)
3 0 1 0 0 0 0 1 1 Lines/page (43H = 67)
4 0 0 0 0 0 0 0 0 Lines printed so far
5 0 0 0 0 0 0 0 0 Not Used
6 0 1 0 1 0 0 0 0 RAM buffer
7 0 1 0 1 0 0 1 0 address (5250)

Interrupt Vectors

Interrupts are a means of allowing an external event to
interrupt the CPU and redirect it to execute some specific
portion of code. The signal that causes this to happen is
called an interrupt and the code executed in response to that
interrupt is called a service routine. After the service
routine executes it returns control of the CPU to the point
where the interrupt occurred and normal processing
continues.

In order for interrupts to occur the system must be primed
to accept them. When the system is primed it is ENABLED
which is shorthand for the instruction used to enable the
interrupt system (EI-Enable Interrupts). A system that is
not enabled is DISABLED and again that is shorthand for
the disable instruction (DI-Disable Interrupts). Besides
priming the system for interrupts there must be some
outside event to stimulate the interrupt. On Level II
systems that could be a clock or a disk. Actually both of
them generate interrupts - the clock gives one every 25
milliseconds, and the disk on demand for certain operations.

When running a Level II system without disks the
interrupts are disabled. It is only when DOS is loaded that
interrupts are enabled and service routines to support
those interrupts are loaded. Interrupts are disabled at the
start of the IPL sequence that is common to Level II and
DOS. For Level II they will remain off, but on a DOS
system they will be enabled at the end of the initialization
in SYS0/SYS.

When an interrupt occurs two things happen. First a bit
indicating the exact cause of the interrupt is set in byte
37E0. Second an RST 38H instruction is executed. As a
result of the RST (which is like a CALL) the address of the
next instruction to be executed is saved on the stack
(PUSH'd) and control is passed to location 0038. Stored at
0038 is a JP 4012. During the IPL sequence 4012 was
initialized to:

4012 DI Disable further interrupts
4013 RET Return to point of interrupt

for non-disk systems or:

4012 CALL 4518 Service Interrupt

for disk systems

The service routine at 4518 examines the contents of 37E0
and executes a subroutine for each bit that is turned on and
for which DOS has a subroutine. The format of the
interrupt status word at 37E0 is:

 7 6 5 4 3 2 1 0 <-- Bits

 X X X

 Not used
 Communications Interrupt
 Not used
 Disk Controller Interrupt
 Clock Interrupt

49

Memory Mapped I/O

DOS maintains an interrupt service mask at 404C that
it uses to decide if there is a subroutine to be executed for
each of the interrupt status. As released 404C contains a
C0 which indicates subroutines for clock and disk
interrupts.

The service routine at 4518 combines the status byte and
the mask byte by AND'ing them together. The result is
used as a bit index into a table of subroutine addresses
stored at 404D - 405C. Each entry is a two byte address of
an interrupt subroutine. Bit 0 of the index corresponds to
the address at 404D/404E, bit 1 404F/4050, etc.

The service routine runs disabled. It scans the interrupt
status from left to right jumping to a subroutine whenever a
bit is found on. All registers are saved before subroutine
entry and a return address in the service routine is PUSH'd
onto the stack so a RET instruction can be used to exit the
subroutine. When all bits in the status have been tested
control returns to the point of interrupt with interrupts
enabled.

Stack Frame Configurations

Level II usually uses the Communications Region for
temporary storage. There are special cases, however where
that is not possible because a routine may call itself (called
recursion) and each call would destroy the values saved by
the previous call. In those cases the stack is used to save
some of the variables. Of course an indexed table could be
used, but in these cases the stack serves the purpose.

FOR Statement Stack Frame

All variable addresses associated with a FOR loop are
carried on the stack until the loop completes. When a
NEXT statement is processed, it searches the stack
looking for a FOR frame with the same index address as
the current one. The routine that searches the stack is at
location 1936. Its only parameter is the address of the
current index which is passed in the DE register set. The
stack is searched backwards from its current position to
the beginning of the stack. If a FOR frame with a matching
index address is not found an NF error is generated. The
stack frame searched for is given below.

Low Memory
 FOR Token
 Addr of FOR Index
 LSB / MSB order
 Sign of increment
 Type (-1 Integer, +1 SP)

 STEP value
 LSB / MSB order

 TO value
 LSB / MSB order

 Binary line # of
 FOR statement
 Address of 1st loop
 statement
High Memory FOR Token

50

GOSUB Stack Configuration

Low Memory Return address
 in Execution Driver
 GOSUB Token
 Binary value of
 GOSUB line #
 Address of GOSUB line
High Memory in PST (current position)

Expression Evaluation

Expression evaluation involves scanning an expression and
breaking it into separate operations which can be executed
in their proper order according to the hierarchy of operators.
This means a statement must be scanned and the operations
with the highest hierarchical value (called precedence
value) must be performed first. Any new terms which
result from those operations must be carried forward and
combined with the rest of the expression.

The method used for evaluation is an operator precedence
parse. An expression is scanned from left to right.
Scanning stops as soon as an operator token or EOS is
found. The variable to the left of the operator (called the
current variable), and the operator (any arithmetic token for
- * / or exp) are called a 'set', and are either:

a) pushed onto the stack as a set or,

b) if a precedence break is detected the operation between
the previous set pushed onto the stack and the current
variable is performed. The result of that operation then
becomes the current variable and the previous set is
removed from the stack. After the computation another
attempt is made to push the new current variable and
operator onto the stack as a set.
This step is repeated until the new set is pushed or there are
no more sets on the stack with which to combine the current
value. In that case the expression has been evaluated.

The variable/operator sets that are pushed on the stack have
the following format:

Precedence value for -->
operator value in prior
set zero for 1st

Continuation addr after -->
precedence break
computation. Usually
2346

 <-- Value for this
 variable

Type code (length) --> <-- Token for operator
for this variable after this variable
 0=+, 1=-, 2=*,
 3=/ 4=[5=AND
Address of precedence --> 6=0R
computation routine.
2406 for +, -, * and /

The test for precedence break is simple. If the operator (the
token where the scan stopped) has the same or a lower
precedence value as the precedence value for the last set
pushed on the stack then a break has occurred, and an
intermediate computation is required. The computation is

performed automatically by POPing the last set. When this
occurs control is transferred to a routine (usually at 2406)
which will perform the operation specified in the set
between that value (the one from the set on the stack), and
the current variable. The result then becomes the current
variable. When the computation is finished control returns
to a point where the precedence break test is repeated. This
time the set which caused the last break is not there, so the
test will be between the same operator as before and the
operator in the previous set. If there is no previous set then
the current variable and operator are pushed as the next set.
Note, an EOS or a non-arithmetic token are treated as
precedence breaks.

Assuming no break occurs the current variable and operator
are pushed on the stack as the next set, and the scan of the
expression continues from the point where it left off. Let's
take an example. Assume we have the expression,

A equals B plus C * D / E 5

Scanning begins with the first character to the right of the
equals sign and will stop at the first token (plus). B plus
would be pushed as the first set because: a) there was no
prior set so there could not have been a precedence break,
and b) the scan stopped on an arithmetic token (plus).

The next scan would stop at the *. Again the variable /
operator pair of C * would be pushed this time as set 2
although for slightly different reasons than before. The *
precedence value is higher than the plus precedence value
already pushed so there is no break. At this time the stack
contains,

Set 2
 00

 2346

 B value

 04 00 Token for +
 after B
 2406

 Set 1

Precedence value 79
for + in Set 1
 2346

 C value

 04 02 Token for *
 after C
 2406

Scan three would stop on the / following D. This time there
would be a precedence break because * and / have the same
values. Consequently set 2 would be POP'd from the stack
and control passes to the precedence break routine at 2406
(other routines may be used depending on the operation to
be performed - check the listing for details). Here the
operation between set 2 (C*) and the current value (D)
would be performed. This would result in a new current
value that will be called M. M equals C * D

After the multiplication control goes back to 2346 (con-
tinuation after break processing) where the rules from
above are used. This time the current value is pushed as set

51

2 because it has a higher precedence value (/) than that in
set 1 (plus). Now the stack contains

 00 Precedence value 79
 --------- ---------
 2346 2346
 --------- ---------
 B value C * D value
 --------- ---------
 04 00 Token for + 04 03 Token for /
 --------- after B --------- after C * D
 2406 2406

 Set 1 Set 2

After pushing set 2 the scan continues, stopping at the
operator. It has a higher precedence value than the (/) in
set 2 so a third set is added to the stack giving:

 -------- Precedence 7C
 -------- for / in set 2 ---------
 -------- 2346

 Set 1 E value

 -------- 04 04 Token for /
 -------- --------- after E
 -------- 2406

 Set 2

The next scan is made and an EOS is found following the 5
(which is now the current value). As mentioned earlier an
EOS or non-arithmetic token is an automatic precedence
break, so set 3 is POP'd from the stack and E 5 is computed
and becomes the current value. Control passes to 2346
where the rules for pushing the next set are applied and set
2 get's POP'd because the current operator is an EOS. Set 2
(M/) and the current value are operated on giving a current
value of

M / E 5 or
C * D / E 5

Again control goes to 2346 which forces set 1 to be POP'd
because the current operator is an EOS. When the set is
POP'd control goes to the computation routine where the
current value and set 1 are operated on. This yields a
current value of

B plus C * D / E 5

Now control goes to 2346 and this time the stack is empty
causing control to be returned to the caller. The expression
has been evaluated and its value is left in WRA1.

DOS Request Codes

DOS request codes provide a mechanism for executing
system level commands from within a program. The way
they work is to cause the DOS overlay module SYSX/SYS
associated with the request to be loaded into 4200 - 5200
and executed. When the request has been satisfied control
is returned to the caller as though a subroutine call had been
made.

DOS functions may be executed by loading a DOS request
code into the A register and executing a RST 28 instruction.
Because of the way DOS processes these request codes the
push on the stack that resulted from the RST instruction is
lost, and control will be returned to the next address found
on the stack - rather than to the address following the RST
instruction. For example,

LD A,VAL LOAD DOS FUNCTION CODE
RST 28 EXECUTE DOS FUNCTION
. THIS IS WHERE WE WANT TO
. RETURN TO
. BUT WILL NOT BECAUSE OF THE WAY
. THE STACK IS MANAGED BY DOS

This will not work because the return address (stored on the
stack by the RST 28) has been lost during processing.
Instead the following sequence should be used:

LD A,VAL LOAD REQUEST CODE
CALL DOS PUT RETURN ADDR ON STACK
.
.
.

DOS RST 28 EXECUTE DOS FUNCTION
ALL REGISTERS ARE PRESERVED
WE WILL AUTOMATICALLY RET TO
CALLER OF DOS

The request code value loaded into the A-register must
contain the sector number minus 2 of the directory sector
for the overlay to be loaded and a code specifying the exact
operation to be performed. The format of the request code
is:
 7 6 5 4 3 2 1 0 <-- Bits

 1 X X X X X X X
 Sector number -2, of
 directory entry for DOS
 Function code to module to be loaded
 be passed to DOS
 module Must be a 1, otherwise
 request will be ignored

As it is presently implemented the file pointed to by the
first entry in the specified directory sector will be loaded.
There is no way for example, to load the file associated
with the 3rd or 4th entry. A list of the system overlay
modules and their functions follows. These descriptions are
incomplete. See the individual modules for a complete
description.

MODULE DIRECTORY SECTOR REQUEST SUB-FUNCTIONS
 MINUS 2 CODE

SYS1 1 93 10 - write 'DOS READY'
 AC 20 - write 'DOS READY'
 BC 30 - scan input string
 C3 40 - move input string to
 DCB
 D3 50 - scan and move input
 string
 E3 60 - append extension to DCB
 F3 70 - reserved

SYS2 2 94 10 - OPEN file processing
 A4 20 - INST file processing
 B4 30 - create directory
 overflow entry
 C4 40 -
 D4 50 - reserved
 E4 60 -
 F4 70 -

SYS3 3 95 10 - CLOSE file processing
 A5 20 - KILL file processing
 B5 30 -
 C5 40 - reserved
 D5 50 -
 E5 60 - load SYS3/SYS
 F5 70 - format diskette
SYS4

SYS5

52

Chapter 5

A BASIC SORT Verb

Contained in this chapter is a sample assembly program that
demonstrates the use of the ROM calls and tables described in
the previous chapters. In this example DOS Exits and Disk
BASIC Exits are used to add a SORT verb to BASIC.

In this case a SORT verb will be added so that the statement

100 SORT I$, O$, K1$

be used to read and sort a file specified by the string I$, O$
and K1$ are strings which specify the output file name and the
sort key descriptors. The procedure for doing this is simple.
First we must modify the Input Phase to recognize the word
SORT and replace it with a token. This can be accomplished
by using one of the DOS Exits.

A DOS Exit is taken during the Input Phase immediately after
the scan for reserved words. We will intercept this exit to
make a further test for the word SORT and replace it with a
token. Processing will then continue as before. Before using
any DOS Exit study the surrounding code to determine exact
register usage. In this case it is important to note that the
length of the incoming line is in the BC register when the exit
is taken. If the subroutine compresses the line (by replacing
the word SORT with a token) then its length will have
changed and the new length must replace the original contents
of BC.

A second modification must be made to the Execution Driver,
or somewhere in its chain, to recognize the new token value
and branch to the SORT action routine. This presents a slight
problem because there are no DOS Exits in the execution
driver before calling the verb routine, and since the driver
code and its tables are in ROM they cannot be changed. In
short there is no easy way to incorporate new tokens into the
Execution Phase.

The solution is to borrow a Disk BASIC token and piggy-
back another token behind it. Then any calls to the verb
routine associated with the borrowed token must be
intercepted and a test make for the piggy-backed token. If one
is found control goes to the SORT verb routine otherwise it
passes to the assigned verb routine. In this example the token
FA will be borrowed and another FA will be tacked behind it
giving a token FAFA.

This example is incomplete because the LIST function has not
been modified to recognize the sort token. If a LIST
command is issued the verb MIDMID will be given for the
SORT verb. There is one more detail that needs attention
before discussing the verb routine. Using the memory layout
figure in Chapter 1 we can see that there is no obvious place to
load an assembly language program without interfering
somehow with one of BASIC's areas. Depending on where
we loaded our verb routine it could overlay the String Area, or
the Stack, or maybe even reach as low as the PST or VLT. Of
course we might get lucky and find an area in the middle of
the Free Space List that never gets used but that's too risky.

BASIC has a facility for setting the upper limit of the memory
space it will use. By using this feature we can reserve a region
in high memory where our verb routine can be loaded without
disturbing any of BASIC's tables. Now for the details of verb
routine.

Because a sort can be a lengthy piece of code only the details
that pertain to DOS Exits, Disk BASIC, and some of the ROM
calls from Chapter 2 will be illustrated. The verb routine has
two sections. The first section will be called once to modify
the DOS and Disk BASIC exit addresses (also called vectors)
in the Communications Region to point to locations within the
verb routine. The vector addresses must be modified after
BASIC has been entered on a DOS system because they are

53

initialized by the BASIC command. The second section has
two parts.

Part one is the DOS Exit code called from the Input Scanner.
Part two is the verb action routine for the SORT verb. It is
entered when a FA token is encountered during the Execution
Phase.

The system being used will be assumed to have 48K of RAM,
at least 1 disk, and NEWDOS 2.1. The verb routine will
occupy locations E000 - FFFF. The entry point for initializing
the vectors will be at E000. All buffers used will be assigned
dynamically in the stack portion of the Free Space List. The
verb routine will be loaded before exiting DOS and entering
Level II BASIC. Although it could be loaded from the BASIC
program by using the CMD'LOAD…..' feature of NEWDOS.

 1. IPL
 2. LOAD,SORT :(load verb into E000 - FFFF 1)
 3. BASIC,57344 :(protect verb area)

100 DEF USR1(0) = &HE000 : initialization entry point
110 A = USR1(0) : initialize vectors

RUN : initialize the sort

100 I$="SORTIN/PAY:1" : (sort in
110 O$-"SORTOUT/PAY:1" : (Sort out
120 KS-"A,A,100-120" : (sort key: ascending order ASCII
 key, sort field is 10
130 SORT I$,O$,K$: (sort file)

RUN

00100 ORG 0E000H
00110 ; INITIAL ENTRY POINT TO INITIALIZE DOS EXIT AND
00120 ; DISK BASIC ADDRESSES.
00130 LD HL,(41B3H) ; ORIGINAL DOS EXIT VALUE
00140 LD (ADR1+1),HL ; IS STILL USED AFTER OUR
00150 ; PROCESSING
00160 LD HL,(41DAH) ; ORIGINAL DISK BASIC ADDR FOR
00170 ; MID$ TOKEN (FA)
00180 LD (ADR2+1),HL ; SAVE IN CASE FA TOKEN FOUND
00190 LD HL,NDX
00200 LD (41B3H),HL
00210 LD HL,NDB
00220 ; ; OUR ADDR
00230 LD (41DAH),HL
00240 ; ; FA TOKEN W/OUR ADDR
00250 RET ; RET TO EXECUTION DRIVER
00260 ;* GET ADDRESS OF VARIABLE
00270 ;* THIS SECTION OF CODE IS ENTERED AS A DOS EXIT DURING THE
00280 ;* INPUT PHASE. IT WILL TEST FOR A 'SORT' COMMAND AND REPLACE
00290 ;* IT WITH A 'FAFA' TOKEN. THE ORGINAL DOS EXIT ADDR HAS BEEN
00300 ;* SAVED AND WILL BE TAKEN AT ADR1.
00310 ;*
00320 NDX CALL SAV ; SAVE ALL REGISTERS
00330 LD IX,SORT-1 ; TEST STRING
00340 LD B,3 ; NO. OF CHARS TO MATCH
00350 NDX1 INC HL ; START OF LOOP
00360 INC IX ; BUMP TO NEXT TEST CHAR
00370 LD A,(IX+0) ; GET A TEST CHAR
00380 CP (HL) ; COMPARE W/INPUT STRING
00390 JR NZ,OUT ; STOP WHEN FIRST MIS-MATCH
00400 DJNZ NDX1 ; ALL 4 CHARS MUST MATCH
00410 ;*
00420 ;* WE HAVE A MATCH. NOW REPLACE THE WORD 'SORT' WITH A TOKEN
00430 ;* 'FAFA' AND COMPRESS THE STRING
00440 ;*
00450 INC HL ; FIRST CHAR AFTER 'SORT'
00460 PUSH HL ; SAVE FOR COMPRESSION CODE
00470 LD BC,-3 ; BACKSPACE INPUT STRING
00480 ADD HL,BC ; START OF WORD 'SORT'
00490 LD (HL),0FAH ; TOKEN REPLACES 'S'
00500 INC HL ; NEXT LOC IN INPUT STRING
00510 LD (HL),0FAH ; TOKEN REPLACES '0'
00520 INC HL ; NEXT LOC IN INPUT STRING
00530 POP DE ; STRING ADDR AFTER SORT

00540 EX DE,HL ; SO WE CAN USE RST 10
00550 ;* ; TO FETCH NEXT CHAR
00560 ;* NOW COMPRESS THE INPUT STRING
00570 ;*
00580 LD BC,3 ; SET COUNT OF CHARS IN
00590 ;* ; EQUAL TO NO SKIPPED OVER
00600 NDX2 RST 10H ; GET NEXT CHAR, DISCARD
00610 ;* ; BLANKS
00620 LD (DE),A ; MOVE IT DOWN
00630 INC DE ; BUMP SOURCE ADDR
00640 INC C ; COUNT 1 CHAR IN LINE
00650 OR A ; TEST FOR END OF STRING
00660 JR NZ,NDX2 ; NOT END, LOOP
00670 LD (DE),A ; EACH LINE MUST END WITH
00680 ;* ; 3 BYTES OF ZEROS
00690 INC DE ; BUMP TO LAST BYTE
00700 LD (DE),A ; STORE 3 RD ZERO
00710 INC C ; THEN SET BC - LENGTH OF
00720 INC C ; LINE + 1
00730 INC C ; SO BASIC CAN MOVE IT
00740 LD (TEMP),BC ; SAVE NEW LINE LENGTH
00750 CALL RES ; RESTORE REGISTERS
00760 LD BC,(TEMP) ; NEW LINE LENGTH TO BC
00770 JR ADR1 ; EXIT
00780 OUT CALL RES ; RESTORE REGISTERS
00790 ADR1 JP 0 ; CONTINUE ON TO ORIGINAL
00800 ;* ; DOS EXIT
00810 ;* DISK BASIC EXIT FOR FA TOKEN. TEST FOR SORT TOKEN FAFA
00820 ;*
00830 NDB CALL SAV ; SAVE ALL REGISTERS
00840 INC HL ; SKIP TO CHAR AFTER TOKEN
00850 LD A,(HL) ; TEST FOR SECOND 'FA'
00860 CP 0FAH ; IS FOLLOWING CHAR A FA
00870 JR Z,NDB1 ; Z IF SORT TOKEN
00880 CALL RES ; RESTORE REGISTERS
00890 ADR2 JP 0 ; CONTINUE WITH MID$ PROCESSING
00900 ;*
00910 ;* WE HAVE A SORT TOKEN
00920 ;*
00930 NDB1 INC HL ; SKIP OVER REST OF TOKEN
00940 CALL GADR ; GET ADDR OF 1ST PARAM
00950 LD (PARM1),DE ; SAV ADDR OF INPUT FILE NAME
00960 RST 08 ; LOOK FOR COMMA
00970 DEFM ',' ; SYMBOL TO LOOK FOR
00980 CALL GADR ; GET ADDR OF 2ND PARAM
00990 LD (PARM2),DE ; SAV ADDR OF OUTPUT FILE NAME
01000 RST 08 ; LOOK FOR COMMA
01010 DEFM ',' ; SYMBOL TO LOOK FOR
01020 CALL GADR ; GET ADDR OF SORT KEYS
01030 LD (PARM3),DE ; SAV ADDR OF SORT KEY
01040 LD (TEMP),HL ; SAVE ENDING POSITION
01050 ;* ; IN CURRENT STATEMENT
01060 ;*
01070 ;* NOW, BLANK FILL I/O DCBS
01080 ;*
01090 LD IX,DCBL ; LIST OF DCB ADDRS
01100 LD C,2 ; NO OF DCBS TO BLANK
01110 LD A,20H ; ASCII BLANK
01120 L1 LD L,(IX+0) ; LSB OF DCB ADDR
01130 LD H,(IX+1) ; MSB OF DCB ADDR
01140 LD B,32 ; NO OF BYTES TO BLANK
01150 L2 LD (HL),A ; BLANK LOOP
01160 INC HL
01170 DJNZ L2 ; LOOP TILL BLANKED
01180 INC IX ; BUMP TO NXT DCB ADDR
01190 INC IX ; BUMP AGAIN
01200 DEC C ; ALL DCBS BLANKED
01210 JR NZ,L1 ; NO
01220 ;*
02230 ; YES, MOVE FILE NAMES TO DCB AREAS
01240 ;*
01250 LD HL,(PARM1) ; ADDR OF INPUT FILE NAME STRNG
01260 LD DE,DCBI ; INPUT DCB
01270 CALL 29C8H ; MOVE NAME TO DCB
01280 LD HL,(PARM2) ; ADDR OF OUTPUT FILE NAME
01290 LD DE,DCBO ; OUTPUT DCB
01300 CALL 29C8H ; MOVE NAME TO DCB
01310 LD HL,(PARM3) ; GET ADDR OF KEY STRING
01320 INC HL ; SKIP OVER BYTE COUNT
01330 LD C,(HL) ; GET LSB OF STRNG ADDR
01340 INC HL ; BUMP TO REST OF ADDR
01350 LD H,(HL) ; GET MSB OF STRNG ADDR
01360 LD L,C ; NOW HL = STRNG ADDR
01370 CALL 1E3DH ; MUST BE ALPHA
01380 JR NC,YA1 ; OK
01390 JP ERROR ; INCORRECT SORT ORDER
01400 YA1 LD (ORDER),A ; SAVE SORT ORDER (A/D)
01410 INC HL ; SKIP TO TERMINAL CHAR
01420 RST 08 ; TEST FOR COMMA
01430 DEFM ','
01440 CALL 1E3DH ; MUST BE ALPHA
01450 JR NC,YA5 ; OK

54

01460 JP ERROR
01470 YA5 LD (TYPE),A ; SAVE TYPE (A/B)
01480 INC HL ; SKIP TO TERMINAL CHAR
01490 RST 8 ; TEST FOR COMMA
01500 DEFM ','
01510 CALL 0E6CH ; GET RECORD SIZE
01520 LD DE,(4121H) ; GET SIZE FROM WRA1
01530 LD (SIZE),DE ; SAVE IT
01540 RST 20H ; MUST BE AS INTEGER
01550 JP M,YA10 ; MINUS IF INTEGER
01560 JP ERROR
01570 YA10 RST 08 ; LOOK FOR COMMA
01580 DEFM ','
01590 CALL 0E6CH ; GET STARTING POSITION
01600 LD DE,(4121H) ; GET POS FROM WRA1
01610 LD (START),DE ; SAVE IT
01620 RST 08 ; LOOK FOR -
01630 DEFM '-' ; CHAR TO TEST FOR
01640 CALL 0E6CH ; GET ENDING POS OF KEY
01650 LD DE,(4121H) ; GET VALUE FROM WRA1
01660 LD (END),DE ; SAVE ENDING S01670 LD

HL,(TEMP) ; RESTORE CURRENT LIME ADDR
01680 ;* ; TO EOS ON RETURN
01690 CALL RES ; RESTORE REGISTERS
01700 LD HL,(TEMP) ; RESTORE EOS ADDR
01710 RET ; RETURN TO BASIC
01720 ;*
01730 ;*
01740 ;*
01750 SORT DEFM 'S' ; S OF SORT
01760 DEFB 0D3H ; TOKEN FOR OR OF SORT
01770 DEFM 'T' ; T OF SORT
01780 ;*
01790 ;* SAVE ALL REGISTERS
01800 ;*
01810 SAV EX DE,HL
01820 EX (SP),HL ; SAV DE/RTN ADDR TO HL
01830 PUSH BC
01840 PUSH AF
01850 PUSH IX
01860 PUSH DE ; SAVE ORIGINAL HL
01870 EX DE,HL ; RESTORE HL RET ADDR TO DE
01880 PUSH DE ; RET ADDR TO STK
01890 RET ; RET TO CALLER
01900 ;*
01910 ;* RESTORE ALL REGISTERS
01920 ;*
01930 RES POP HL ; RTN ADDR TO HL
01940 POP DE ; REAL HL

01950 POP IX
01960 POP AF
01970 POP BC
01980 EX (SP),HL ; RTN ADDR TO STK
01990 EX DE,HL
02000 RET
02010 JP (HL) ; RTN TO CALLER
02020 ;*
02030 ;* GET THE ADDRESS OF THE NEXT VARIABLE INTO DE
02040 ;*
02050 GADR LD A,(HL) ; GET NEXT CHAR FROM INPUT
02060 ;* ; STRNG, TST FOR LITERAL
02070 CP 22H ; IS IT A QUOTE -START OF
02080 ;* ; A LITERAL-
02090 JR NZ,GADR2 ; NO, GO FIND ADDR OF VAR
02100 CALL 2866H ; YES, GO BUILD A LSPT ENTRY
02110 JR GADR5 ; THEN JOIN COMMON CODE
02120 GADR2 CALL 2540H ; GET ADDR OF NEXT VARIABLE
02130 GADR5 RET 20H ; IS IT A STRING
02140 LD DE,(4121H) ; ADDR OF NEXT VAR
02150 RET Z ; RET IF STRING VAR
02160 POP HL ; CLEAR STACK
02170 POP HL ; CLEAR STACK
02180 LD A,2 ; ERROR CODE FOR SYNTAX ERR
02190 JP 1997H ; GO TO ERROR ROUTINE
02200 ;*
02210 ;* ERROR EXIT
02220 ;*
02230 ERROR CALL RES ; RESTORE REGISTERS
02240 POP HL ; CLEAR STACK
02250 LD A,2 ; SYNTAX ERROR CODE
02260 JP 1997H ; PRINT ERROR MESSAGE
02270 ;*
02280 ;*
02290 ;*
02300 DCBL DEFW DCBI
02310 DEFW DCBO
02320 PARM1 DEFW 0 ; INPUT FILE NAME STRING ADDR
02330 PARM2 DEFW 0 ; OUTPUT FILE NAME STRING ADDR
02340 PARM3 DEFW 0 ; KEY STRING ADDR
02350 TYPE DEFB 0 ; RECORD TYPE (A/B/C)
02360 ORDER DEFB 0 ; SORT ORDER (A/D)
02370 SIZE DEFW 0 ; RECORD SIZE
02380 START DEFW 0 ; STARTING POSITION OF KEY
02390 END DEFW 0 ; ENDING POSITION OF KEY
02400 TEMP DEFW 0 ; HOLDS EOS ADDR
02410 DCBI DEFS 32 ; INPUT DCB
02420 DCBO DEFS 32 ; OUTPUT DCB
02430 END

55

Chapter 6

BASIC Overlay Routine

This example shows how the tables in the Communications
Region can be manipulated so that a BASIC program can
load and execute overlays. The overlay program will add
statements to an executing BASIC program while preserving
all the current variables. The calling sequence to be used is:

100 DEF USRl=&HE000 : Address of overlay program
 . : Main body of application program
 .
 .
300 F$="FILE1/BAS" : File containing overlay
310 Z=USR1(500) : Replace lines 500 thru the end
 . : of the program with the
 . : statement from FILE1/BAS.)
320 GOSUB 500 : Execute the overlay
 .
 .
 .
500 REM START OF OVERLAY AREA
 .
 .

The operating assumptions for this example will be the same
as those in chapter 5. Note, overlay files containing the
ASCII file must have been saved in the A mode.

The program itself will be considerably different, how-ever.
For instance, there will be no use of DOS
Exits. This means that the CR will not need modification
so there will be no need for an initial entry point. One
parameter will be passed in the calling sequence while the
other one will have an agreed name so that it can be
located in the VLT.

When a BASIC program is executing there are three
major tables that it uses. First is the PST where the
BASIC statements to be executed have been stored.
Second is the VLT where the variables assigned to the
program are stored, and the third table is the FSL which
represents available memory. All of these tables occur in
the order mentioned. The problem we need to overcome in
order to support overlays is to find a way to change the first
table while maintaining the contents of the second one. A
diagram of memory showing the tables follows.

 Level II
 ROM

 Communications
 Region

 DOS Nucleus

 Disk BASIC

 PST <--- this table needs to be
 modified

 VLT <--- this table needs to
 remain intact

 FSL

 String Area

 Overlay
 Program
end of memory --->

Fortunately this can be accomplished quite easily. By
moving the VLT to the high end of FSL we can separate it
from the PST. Then the overlay statements can be read from
disk and added to the PST. Obviously the PST would either
grow or shrink during this step unless the overlay being
loaded was exactly the same size as the one before it. After
the overlay statements have been added the VLT is moved
back so it is adjacent to the PST. Then the pointers to the
tables moved are updated and control is returned to the
BASIC Execution Driver.

The overlay loader used in this example assumes that the file
containing the overlay statements is in ASCII format. This
means that each incoming line must be tokenized before
being moved to the PST. To speed up processing the loader
could be modified to accept tokenized files.

There is no limit to the number of overlays that can be
loaded. The program will exit with an error if a line number
less than the starting number is detected. The loader does
not test for a higher level overlay destroying a lower one,
this would be disastrous - as the return path would be
destroyed.

A sample program to load three separate overlays is given as
an example.

56

100 A = 1.2345
110 B = 1
120 IF B = 1 THEN F$ = "FILE1"
130 IF B = 2 THEN F$ = "FILE2"
140 IF B = 3 THEN F$ = "FILE3"
150 Z = USR1(500)
160 GOSUB 500
170 B = B + 1
180 IF B > 3 THEN 110
190 GOTO 120

500 PRINT"OVERLAY #1 ENTERED"
510 PRINT A
520 C = 25
530 D = 30
540 E = C+D+A Contents
550 PRINT "C = ";C of File 1
560 PRINT "D = ";D
570 PRINT "E = ";E
580 RETURN

500 PRINT "OVERLAY #2 ENTERED"
510 PRINT A
520 C = C + 1
530 D = D + 1
540 E = E + 1 Contents
550 REM of File 2
560 REM
570 REM
580 REM
590 PRINT "C, D, E =";C,D,E
600 RETURN

500 PRINT "OVERLAY #3 ENTERED"
510 A = A + 1 Contents
520 PRINT "A = ";A of File 3
530 RETURN

00100 ORG 0F000H
00110 OPEN EQU 4424H ; DOS ADDRESS
00120 READ EQU 4436H ; DOS ADDRESS
00130 ERN EQU 12 ; DISK DCB ADDRESS
00140 NRN EQU 10 ; DISK DCB ADDRESS
00150 EOF EQU 8 ; DISK DCB ADDRESS
00160 ;*
00170 ;* ENTRY POINT FOR OVERLAY LOADING OF BASIC PROGRAMS
00180 ;*
00190 PUSH AF ; SAVE ALL REGISTERS
00200 PUSH BC
00210 PUSH DE
00220 PUSH HL
00230 LD HL,-1 ; INITIALIZE SECTOR COUNT
00240 LD (RCOUNT),HL ; TO MINUS 1
00250 LD HL,00 ; SO WE CAN LOAD CSP
00260 ADD HL,SP ; LOAD CSP
00270 LD (CSP),HL ; SAVE FOR RESTORATION
00280 LD DE,(4121H) ; LINE NO TO START OVERLAY
00290 LD (LINE),DE ; SAVE FOR FUTURE REF
00300 LD A,(40AFH) ; FUNCTION VALUE TYPE
00310 LD (TYPE),A ; MUST BE RESTORED AT END
00320 ;*
00330 ;* BLANK FILL DCB BEFORE MOVING NAME INTO IT
00340 ;*
00350 LD B,32 ; NO. OF BYTES TO BLANK
00360 LD HL,DCB ; DCB ADDR
00370 LD A,20H ; ASCII BLANK
00380 BFL LD (HL),A ; MOVE ONE BLANK
00390 INC HL ; BUMP TO NEXT WORD
00400 DJNZ BFL ; LOOP TILL DCB FILLED
00410 ;*
00420 ;* GET OVERLAY FILE NAME FROM VARIABLE F$
00430 ;* MOVE IT INTO THE BLANKED DCB
00440 ;*
00450 LD HL,LFN ; STRING FOR COMMON VAR NAME
00460 CALL 2540H ; GET ADDR OF F$
00470 RST 20H ; MAKE SURE IT'S A STRING
00481 JR Z,OK ; ZERO IF STRING
00490 JP ERR ; WRONG TYPE OF VARIABLE
00500 OK LD HL,(4121H) ; GET ADDR OF F$ INTO HL
00510 LD DE,DCB ; DCB ADDR
00520 CALL 29C8H ; MOVE F$ NAME TO DCB
00530 ;*
00540 ;* INITIALIZE ALL LOCAL VARIABLES
00550 ;*
00560 LD A,0 ; SET PASS FLAG TO ZERO

00570 LD (PF),A ; PASS FLAG
00580 LD (FI),A ; SECTOR BUFFER INDEX
00590 ;*
00600 ;* LOCATE ADDR OF VARIABLE ASSIGNED TO FUNCTION CALL. IT
00610 ;* MUST BE RECOMPUTED AFTER THE OVERLAY HAS BEEN LOADED
00620 ;* BECAUSE THE VLT WILL NAVE BEEN MOVED. NEXT, ALLOCATE
00630 ;* SPACE IN THE FSL FOR THE SECTOR BUFFER USED FOR
00640 ;* READING THE OVERLAY FILE.
00650 ;*
00660 LD HL,00 ; SO WE CAN LOAD CSP
00670 ADD HL,SP ; HL = CSP
00680 PUSH HL ; SAVE CSP
00690 LD BC,20 ; AMT TO BACKSPACE CSP
00700 ADD HL,BC ; GIVES CSP - 20 OR ADDR
00710 ;* ; OF FUNCTION VARIABLE
00720 LD (VARADR),HL ; SAVE STK ADDR OF VAR
00730 POP HL ; RESTORE CSP TO HL
00740 LD BC,-256 ; AMT OF SPACE TO ALLOCATE
00750 ;* ; IN FSL FOR SECTOR BUFFER
00760 ADD HL,BC ; COMPUTE NEW CSP
00770 LD (BADDR),HL ; START OF SECTOR BUFFER
00780 LD SP,HL ; IS ALSO NEW CSP
00790 PUSH HL
00800 LD DE,(40F9H) ; CURRENT END OF PST
00810 LD (CEPST),DE ; SAVE FOR COMPUTATIONS
00820 LD HL,(40FBH) ; START OF ARRAYS
00830 XOR A ; CLEAR CARRY
00840 SBC HL,DE ; COMPUTE OFFSET FROM START
00850 ;* ; OF VLT TO START OF ARRAYS
00860 LD (LSVLT),HL ; SAVE OFFSET
00870 ;*
00880 ;*
00890 ;*
00900 LD DE,(LINE) ; FIND ADUR OF LINE WHERE
00910 CALL 1B2CH ; OVERLAY STARTS IN PST
00920 LD (40F9H),BC ; MAKE IT TEMP END OF PST
00930 ;*
00940 ;* COMPUTE LENGTH OF VLT
00950 ;*
00960 LD DE,(CEPST) ; ORGINAL END OF PST
00970 LD HL,(40FDH) ; START OF FSL
00980 XOR A ; CLEAR CARRY
00990 SBC HL,DE ; GIVES LNG -1 OF VLT
01000 INC HL ; CORRECT FOR -1
01010 LD (LVLT),HL ; SAVE LENGTH OF VLT
01020 POP HL ; RESTORE CSP TO HL
01030 LD BC,-50 ; ASSUMED STK LENG NEEDED
01040 ADD HL,BC ; GIVE END OF TEMP VLT
01050 LD BC,(LVLT) ; NOW, SUBTRACT LENGTH OF
01060 XOR A ; VLT FROM END TO GET START
01070 SBC HL,BC ; ADDRESS
01080 LD (SNVLT),HL ; SAVE END OF TEMP VLT
01090 PUSH HL ; SO WE CAN
01100 POP DE ; LOAD IT INTO DE
01110 LD HL,(CEPST) ; START OF OLD PST
01120 LD BC,(LVLT) ; SIZE OF VLT
01130 LDIR ; MOVE VLT TO TEMP LOC.
01140 ;*
01150 ;* BEGIN OVERLAY LOADING
01160 ;*
01170 LD DE,DCB ; DCB FOR OVERLAY FILE
01180 LD HL,(BADDR) ; SECTOR BUFF ADDR
01190 LD BC,0 ; SPECIFY SECTOR I/O
01200 CALL OPEN ; OPEN OVERLAY FILE
01210 LOOP CALL GNL ; GET NEXT LINE FROM FILE
01220 JR Z,OUT ; ZERO IF NO MORE LINES
01230 ;* ; IN OVERLAY FILE
01240 CALL ATOB ; ADD LINE TO PST
01250 JR LOOP ; LOOP TILL FILE EXHAUSTED
01260 ;*
01270 ;* OVERLAY STATEMENTS HAVE BEEN ADDED. RESET POINTERS
01280 ;* TO VLT AFTER MOVING IT DOWN (ADJACENT TO PST).
01290 ;*
01300 OUT LD HL,(SNVLT) ; START OF TEMP VLT
01310 LD DE,(40F9H) ; CURRENT END OF PST
01320 INC DE ; LEAVE TWO BYTES
01330 INC DE ; OF ZEROS AT END OF PST
01340 LD (40F9H),DE ; SAVE START ADDR OF NEW VLT
01350 LD BC,(LVLT) ; LENGTH OF VLT
01360 LDIR ; MOVE VLT TO END OF PST
01370 INC DE ; GIVES ADDR OF FLS
01380 PUSH DE ; SAVE FSL ADDR
01390 LD HL,(40F9H) ; START OF VLT
01400 LD BC,(LSVLT) ; PLUS LNG OF SIMP VAR
01410 ADD HL,BC ; GIVES ADDR OF ARRAYS PTR
01420 LD (40FBH),HL ; SAVE NEW ARRAYS POINTER
01430 POP HL ; HL = NEW FSL ADDR
01440 LD (40FDH),HL ; UPDATE FSL
01450 ;*
01460 ;* COMPUTE DISTANCE VLT HAS MOVED AND UPDATE THE ADDR OF
01470 ;* THE FUNCTION VARIABLE BEING CARRIED ON THE STACK.
01480 ;*

57

01490 LD DE,(CEPST) ; ORIGINAL START OF VLT
01500 LD HL,(40F9H) ; CURRENT START OF VLT
01510 RST 18H ; COMPARE THE ADDRESSES
01520 JR NC,UP ; NEW VLT WAS MOVED UP
01530 PUSH HL ; REVERSE OPERANDS
01540 PUSH DE
01550 XOR A ; CLEAR CARRY
01560 POP HL ; RESTORE OPERANDS
01570 POP DE
01580 JR UP1 ; GO COMPUTE DISTANCE
01590 UP XOR A ; CLEAR CARRY FOR SUB
01600 UP1 SBC HL,DE ; COMPUTE ANT VLT HAS MOVED
01610 PUSH HL ; SAVE DISTANCE
01620 LD HL,(VARADR) ; THEN ADDR IT TO ADDR
01630 LD C,(HL) ; CARRIED ON STK
01640 INC HL ; BUMP TO MSB OF ADDR
01650 LD B, (HL) ; BC = ADDR OF VAR THAT WAS
01660 ;* ; CARRIED ON STK
01670 POP HL ; GET DISPLACEMENT
01680 ADD HL,BC ; GET NEW ADDR (BECAUSE VLT
01690 ;* ; HAS BEEN MOVED
01700 PUSH HL ; SO WE CAN LOAD IT INTO
01710 POP DE ; LOAD NEW ADDR INTO DE
01720 LD HL,(VARADR) ; REFETCH STK ADDR
01730 LD (HL),E ; LSB OF FUNCTION VAR ADDR
01740 INC HL ; NEXT BYTE ADDR ON STK
01750 LD (HL),D ; MSB OF FUNCTION VAR ADDR
01760 ;*
01770 ;* RESET TYPE TO IT'S ORGINAL VALUE
01780 ;*
01790 LD A,(TYPE) ; GET MODE FLAG WHEN ENTERED
01800 LD (40AFH),A ; RESTORE MODE TO ORIGINAL
01810 LD HL,(CSP) ; RESET CSP
01820 LD SP,HL ; TO IT'S ORIGINAL VALUE
01830 POP HL ; RESTORE REGISTERS
01840 POP DE
01850 POP BC
01860 POP AF
01870 RET ; RETURN TO BASIC
01880 ;*
01890 ;* GNL - GETS NEXT LINE OF BASIC PROGRAM PROM A FILE
01900 ;* MOVES IT TO BASIC LINE BUFFER AREA AND THEN
01910 ;* TOKENIZES IT.
01920 ;* FILE IS ASSUMED TO BE IN ASCII FORMAT. LINES ARE
01930 ;* TERMINATED BY A CARRIAGE RET. (0D).
01940 ;*
01950 GNL LD A,(PF) ; GET PASS FLAG
01960 OR A ; IS IT TIME TO READ SECTOR
01970 JR NZ,GNL5 ; NO IF NON-ZERO
01980 GNL3 LD A,0 ; RESET SECTOR BUFF INDEX
01990 LD (FI),A ; TO ZERO
02000 LD HL,(RCOUNT) ; PREPARE TO TEST FOR
02010 INC HL ; END OF FILE. BUMP COUNT
02020 LD (RCOUNT),HL ; OF SECTORS READ
02030 LD BC,0 ; READ NEXT SECTOR
02040 LD DE,DCB ; OVERLAY DCB ADDR
02050 LD HL,(BADDR) ; SECTOR BUFF ADDR
02060 CALL READ ; READ NEXT SECTOR
02070 LD A,1 ; RESET PASS FLAG
02080 LD (PF),A ; TO DATA IN BUFFER
02090 GNL5 LD DE,(RCOUNT) ; NOW TEST POE END OF FILE
02100 LD HL,(DCB+ERN) ; LAST SECTOR NO FROM DCB
02110 XOR A ; CLEAR CARRY FOR SUB
02120 SBC HL,DE ; HAS LAST SECTOR BEEN READ
02130 JR NZ,GNL10 ; NON-ZERO IF NOT LAST SECT
02140 LD A,(DCB+EOF) ; IN LAST SECTOR. END OF D
02150 LD B,A ; DATA REACHED YET?
02160 LD A,(FI) ; CURRENT SECTOR INDEX
02170 SUB B ; MUST BE LE TO EOD INDEX
02180 JR C,GNL10 ; CARRY IF NOT END OF DATA
02190 XOR A ; SIGNAL END OF FILE
02200 RET ; RET TO MAIN PGM
02210 GNL10 LD HL,(BADDR) ; SECTOR BUFF ADDR
02220 LD A,(FI) ; CURRENT BUFF INDEX
02230 LD C,A ; FOR 16 BIT ARITH
02240 LD B,0 ; DITTO
02250 ADD HL,BC ; CURRENT LINE ADDR IN BUFF
02260 LD DE,(40A7H) ; BA LINE BUFF ADDR
02270 GNL15 LD A,(HL) ; MOVE LINE FROM SECT BUFF
02280 LD (DE),A ; TO BASIC LINE BUFF
02290 INC DE ; BUMP DEST ADDR
02300 INC C ; COUNT 1 CHAR MOVED
02310 JR C,GNL3 ; JMP IF LINE OVERFLOWS
02320 ;* ; SECTOR
02330 INC HL ; NO OVERFLOW, BUMP FETCH
02340 SUB 0DH ; ADDR. TEST FOR END OF LINE
02350 JR NZ,GNL15 ; LOOP TILL END OF LINE
02360 DEC DE ; BKSPC 1 CHAR IN LINE BUFF
02370 LD (DE),A ; AND TERM IT WITH A ZERO
02380 LD A,C ; SAVE ENDING BUFF INDEX
02390 LD (FI),A ; FOR NEXT LINE
02400 OR A ; SIGNAL MORE DATA

02410 RET ; RET TO CALLER
02420 ;*
02430 ;* TOKENIZE LINE IN BUFFER. THEN ADD IT TO PST
02440 ;*
02450 ATOB LD HL,(40A7H) ; LINE BUFFER ADDR
02460 CALL 1E5AH ; GET BINARY LINE NO
02470 PUSH DE ; SAVE IT
02480 PUSH HL ; SAVE LINE BUFF ADDR
02490 LD HL,(LINE) ; BEG OVERLAY LINE NO
02500 RST 18H ; COMPARED W/CURRENT LINE
02510 JR Z,ATOB5 ; OK IF EQUAL
02520 JR NC,ERR ; ERR IF INCOMING LESS
02530 ;* ; THAN OVERLAY LINE NO
02540 ATOB5 POP HL ; RESTORE LINE ADDR
02550 CALL 1BC0H ; TOKENIZE LINE
02560 LD HL,(40F9H) ; CURRENT END OF PST
02570 PUSH HL ; SAVE ADDR OF THIS LINE
02580 ADD HL,BC ; ADD LNG OF NEW LINE
02590 LD (40F9H),HL ; START OF NEXT LINE
02600 PUSH HL ; SO WE CAN
02610 POP DE ; LOAD IT INTO DE
02620 ;*
02630 ;* UPDATE POINTER TO NEXT LINE IN NEW LINE BEING ADDED.
02640 ;* THEN MOVE BINARY LINE NO. FOR THIS LINE TO PST.
02650 ;*
02660 POP HL ; ADDR OF THIS LINE IN PST
02670 LD (HL),E ; LSB OF ADDR NEXT LINE
02680 INC HL
02690 LD (HL),D ; MSB OF ADDR NEXT LINE
02700 INC HL ; START OF BIN LINE NO
02710 POP DE ; BINARY LINE NO
02720 LD (HL),E ; LSB OF LINE NO
02730 INC HL
02740 LD (HL),D ; MSB OF LINE NO
02750 INC HL ; BUMP TO FIRST CHAR IN LINE
02760 EX DE,HL ; DE = PST FOR LINE
02770 LD HL,(40A7H) ; TOKENIZED LINE ADDR
02780 DEC HL
02790 DEC HL
02800 ATOB10 LD A,(HL) ; GET A TOKENIZED BYTE
02810 LD (DE),A ; MOVE IT TO PST
02820 INC HL
02830 INC DE
02840 OR A ; TEST OF EOS
02850 JR NZ,ATOB10 ; JMP IF NOT END OF STAT.
02860 LD (DE),A ; OF MACHINE ZEROS
02870 INC DE
02880 LD (DE),A
02890 RET ; RET TO CALLER
02900 ;*
02910 ;* ERROR PROCESSING - RECOVER STACK SPACE
02920 ;*
02930 ERR POP AF ; CLEAR STACK
02940 POP AF ; CLEAR STACK
02950 POP AF ; CLEAR STACK
02960 LD HL,0 ; DEALLOCATE SECTOR BUFFER
02970 ADD HL,SP ; CSP
02980 LD BC,256 ; SIZE OF SECTOR BUFF
02990 ADD HL,BC ; COMPUTE NEW CSP
03000 LD SP,HL ; SETUP NEW CSP
03010 ERR10 POP AF ; CLEAR STACK
03020 POP AF ; CLEAR STACK
03030 POP AF ; CLEAR STACK
03040 POP AF ; CLEAR STACK
03050 POP AF ; CLEAR STACK
03060 LD A,2 ; CODE FOR SYNTAX ERROR
03070 JP 1997H ; GIVE ERR, RTN TO BASIC
03080 ;*
03090 ;* CONSTANTS AND COUNTERS
03100 ;*
03110 LINE DEFW 0 ; OVERLAY LINE NO
03120 CSP DEFW 0 ; HOLDS CSP ON ENTRY
03130 TYPE DEFB 0 ; ORIGINAL DATA TYPE
03140 LFN DEFM 'F$' ; COMMON VARIABLE NAME
03150 DEFB 0
03160 DCB DEFS 32 ; OVERLAY DCB
03170 BADDR DEFW 0 ; SECTOR BUFF ADDR ON STK
03180 VARADR DEFW 0 ; VARIABLE ADDR ON STK
03190 CEPST DEFW 0 ; CURRENT END OF PST
03200 LVLT DEFW 0 ; LENGTH OF VLT
03210 SNVLT DEFW 0 ; START ADDR OF NEW VLT
03220 LSVLT DEFW 0 ; LENGTH OF SIMP VAR VLT
03230 PF DEFB 0 ; PASS FLAG
03240 FI DEFB 0 ; SECTOR BUFF INDEX
03250 RCOUNT DEFW -1 ; COUNT OF SECTORS READ
03260 END

58

Chapter 7 ════════════

BASIC Decoded: New ROMs

The comments in chapter 8 are based on the original three chip
ROM set, if you have a 2 chip ROM configuration your
dissassembly will probably be slightly different.

Differences between the latest 'MEM SIZE?' ROMs and the old
ROMs are given below. Locations with an asterisk next to them
have different contents than the next chapter.

When running a Disassembler be careful to check the page
sequence where differences occur.

This comment chapter was designed to be used in conjunction
with a disassembler that produces 62 lines per page. The
Apparat NEWDOS plus Disassembler was used during the
books production.

0050 0D DEC --- Enter no shift 0D) * ASCII values
0051 0D DEC --- Enter shift (0D)
0052 1F RRA --- Clear no shift (1F)
0053 1F RRA --- Clear shift (1F)
0054 01015B LD --- BREAK ns (01) / BREAK shift (01) / up arrow ns (5B)
0057 1B DEC --- Up arrow shift (1B)
0058 0A LD --- Down arrow no shift (0A)
0059 *00 NOP --- Down arrow shift (00)
005A 08 EX --- Left arrow no shift (08)
005B 1809 JR --- Left arrow shift (18) / right arrow no shift (09)
005D 19 ADD --- Right arrow shift (19)
005E 2020 JR --- Space no shift (20) / space shift (20)

00FC *210E01 LD --- Address of 'R/S L2 BASIC' message

0105 4D LD --- M * MEM SIZE
0106 45 LD --- E
0107 4D LD --- M
0108 *2053 JR --- Space, S
010A *49 LD --- I
010B *5A LD --- Z
010C *45 LD --- E

59

010D *00 NOP --- Message terminator
010E *52 LD --- R * R/S L2 BASIC
010F *2F CPL --- /
0110 *53 LD --- S
0111 *204C JR --- Space, L
0113 *322042 LD --- 2, space, B
0116 *41 LD --- A
0117 53 LD --- C
0118 *49 LD --- I
0119 *43 LD --- C
011A *0D DEC --- Carriage return
011B *00 NOP --- Message terminator
011C *C5 PUSH --- Save active row address
011D *010005 LD --- Delay count value
0120 *CD6000 CALL --- Delay for 7.33 milliseconds * Debounce routine
0123 *C1 POP --- Restore row address
0124 *0A LD --- And reload original flags from active row
0125 *A3 AND --- Then combine current flag lists with original flag bits
0126 *C8 RET --- Rtn to caller if zero because row was not active on 2nd test
0127 *7A LD --- Otherwise we have a legitimately active row
0128 *07 RLCA --- Row index * 2
0129 *07 RLCA --- Row index * 4
012A *C3FE03 JP --- Return to rest of keyboard driver routine

0248 *0660 LD --- Now, delay for 476/703 microseconds

024F *0685 LD --- Then delay for 865/975 microseconds

02E2 *20ED JR --- If no match, skip to next program on cassette
02E4 *23 INC --- We have a character match. Bump to next char of typed in name.

03FB *C31C01 JP --- Go to debounce routine. If legitimate char rtn to 3FE, else rtn to
caller.

0683 *20F1 JR --- Loop thru block move routine 128 times

1225 E7 RST --- Double precision or string
1226 *300B JR --- Jmp if double precision

124D *E7 OR --- Set status flags

1265 *F24312 JP --- No change in this comment

2067 3E01 LD --- A = device code for printer * LPRINT routine
2069 329C40 LD --- Set current system device to printer
206C *C37C20 JP
206E CDCA41 CALL --- DOS Exit * PRINT routine
2072 *FE23 CP --- Test for #
2074 *2006 JR --- Jmp if not PRINT #
2076 *CD8402 CALL --- Write header on cassette file * PRINT # routine
2079 *329C40 LD --- Set current system device to cassette
207C *2B DEC --- Backspace over previous symbol in code string
207D *D7 RST --- Re-examine previous char in code string
207E *CCFE20 CALL --- If end of string write a Carriage Return
2081 *CA6921 JP --- If end of string turn off cassette and return
2084 *F620 OR --- Not end of string. Convert possible 40 to 60
2086 *FE60 CP --- Then test for @
2088 *201B JR --- Jmp if not PRINT @
208A *CD012B CALL --- Evaluate @ expression, result in DE * PRINT @ routine
208D *FE04 CP --- A = MSB, test for @ value > 1023
208E *D24A1E JP --- FC error if @ position > 1023
2092 *E5 PUSH --- Save current code string addr
2093 *21003C LD --- HL = starting addr of video buffer
2096 *19 ADD --- Add tab position

60

2097 *222040 LD --- And save addr in video DCB as cursor addr
209A *7B LD --- Then get position within line
209B *E63F CP --- And truncate it to 63
209D *32A640 LD --- Then save as current position within line
20A0 *E1 POP --- Restore code string addr (starting addr of item list)
20A1 *CF RST --- But make sure a comma follows the tab position
20A2 *2C INC --- DC 2C ','
20A3 *18C7 JR --- Go get first variable from item list
20A5 *7E LD --- Reload next element from code string
20A6 *FEBF CP --- Test for USING token
20A8 *CABD2C JP --- Jmp if USING token
20AB *FEBC CP --- Test for TAB token
20AD *CA3721 JP --- Jmp if TAB token
20B0 *E5 PUSH --- Save current code string addr
20B1 *FEC2 CP --- Test for a comma
20B3 *2853 JR --- Go get next item if a comma
20B5 *FE3B CP --- Not comma, test for semi-colon
20B7 *285E JR --- Go get next item if semi-colon
20B9 CD3723 CALL --- Evaluate next item to be printed
20BC *E3 EX --- Save current code string addr HL = addr of current item

20F6 *C37C20 JP --- And loop till end of statement (EOS)

213A *E67F AND --- Result in A-reg. Do not let it exceed 127

2166 *C38120 JP --- Process next of PRINT TAB statement

226A *00 NOP --- Remove
226B *00 NOP --- Erroneous
226C *00 NOP --- Test
226D *00 NOP --- For
226E *00 NOP --- FD error

2C1F *D6B2 --- Test for CLOAD? * CLOAD routine
2C21 *2802 --- Jmp if CLOAD?
2C23 *AF --- Signal CLOAD
2C24 *012F23 --- 2C25: CPL A=-1 if CLOAD?, 0000 if CLOAD
2C27 *F5 --- 2C26: INC HL position to file name Save CLOAD? / CLOAD flag
2C28 *7E --- Get next element from code string. Should be file name
2C29 *B7 --- Set status flags
2C2A *2807 --- Jmp if end of line
2C2C *CD2723 --- Evaluate expression (get file name)
2C2F *CD132A --- Get addr of file name into DE
2C32 *1A --- Get file name
2C33 *6F --- And move it to L-reg
2C34 *F1 --- Restore CLOAD? / CLOAD flags
2C35 *B7 --- Set status register according to flags
2C36 *67 --- H=CLOAD?/CLOAD flag, L=file name
2C37 *222141 --- Save flag and file name in WRA1
2C3A *CC4D1B --- If CLOAD call NEW routine to initialize system variables
ZC3D *210000 --- This will cause the drive to be selected when
2C40 *CD9302 --- We look for leader and synch byte
2C43 --- Restore CLOAD? / CLOAD flag, file name

2FFB *DEC3 --- These instructions
2FFD *C344B2 --- Are not used by Level II

61

Chapter 8 ════════════

BASIC Decoded: Old ROMs

How to use this book

Unlike most books, this book is made to come apart. Due to the
unique nature of the subject matter and the use to which it will
be put, its pages may be removed and inserted into a three ring
binder. The pages are pre-drilled, and the binding is such that
the pages may be removed with little effort.

Each page has 62 lines of comments. This exactly matches the
Apparat disassembler's output format. Any printer that will
print 66 lines per eleven inch length page, will print the
disassembler's output so that it may be lined up with the
comments exactly. Remove the pages and insert them into a
three ring binder.

The comments and memory locations are for the original three
chip ROM sets, please see chapter 7 for differences on later 2
chip sets.

63

0000 F3 DI --- Power on IPL entry -Turn off clock/disk interrupts
0001 AF XOR A --- Clear A-reg, status
0002 C37406 JP 0674H --- Go to beginning of IPL sequence
0005 C30040 JP 4000H --- *********************************** Compare ******
0008 C30040 JP 4000H --- RST 08 (JP 1C96) Compare value following cont-->
000B E1 POP HL • These instructions are not
000C E9 JP (HL) • used by Level II
000D C39F06 JP 069FH --- Jmp to load & execute sector loader
0010 C30340 JP 4003H --- RST 10 (JP 1D78) Load and examine next char
0013 C5 PUSH BC --- Save BC - Keyboard routine
0014 0601 LD B,01H --- B = Entry code
0016 182E JR 0046H --- Go to driver entry routine (3C2)
0018 C30640 JP 4006H --- RST 18 (JP 1C90H) Compare DE:HL
001B C5 PUSH BC --- Save BC - Display routine, printer routine
001C 0602 LD B,02H --- B = Entry code
001E 1826 JR 0046H --- Go to driver entry routine (3C2)
0020 C30940 JP 4009H --- RST 20 (JP 25D9H) Determine data type.
0023 C5 PUSH BC --- Save BC
0024 0604 LD B,04H --- B = Entry code
0026 181E JR 0046H --- Go to driver entry routine (3C2)
0028 C30C40 JP 400CH --- RST 28 (Non DOS - Ret; DOS 2.0 - JP 4BA2H)
002B 111540 LD DE,4015H --- Load keyboard DCB addr into DE ** Scan keyboard
002E 18E3 JR 0013H --- Jmp to keyboard driver
0030 C30F40 JP 400FH --- RST 30 (Non DOS - Rtn DOS 2.0 - JP 44B4H)
0033 111D40 LD DE,401DH --- Load video DCB addr into DE ***** Video display
0036 18E3 JR 001BH --- Jmp to video driver
0038 C31240 JP 4012H --- RST 38 (Non DOS - DI, Rtn DOS 2.0 - cont-->
003B 112540 LD DE,4025H --- Load printer DCB ptr *****************************
003E 18DB JR 001BH --- Jmp to printer driver
0040 C3D905 JP 05D9H --- Go see what's being typed
0043 C9 RET • These instructions are
0044 00 NOP • not used
0045 00 NOP • by Level II
0046 C3C203 JP 03C2H --- Go to driver entry routine
0049 CD2B00 CALL 002BH --- Strobe keyboard ******** Wait for keyboard input *
004C B7 OR A --- Test if any key active
004D C0 RET NZ --- Go if key active
004E 18F9 JR 0049H --- Loop till some key pressed
0050 0D DEC C --- ENTER, no shift (0D) *************** see note--> *
0051 0D DEC C --- ENTER, shift (0D)
0052 1F RRA --- CLEAR, no shift (1F)
0053 1F RRA --- CLEAR, shift (1F)
0054 01015B LD BC,5B01H --- BREAK ns (01), BREAK shift (01), UP arrow ns (5B)
0057 1B DEC DE --- Up arrow, shift (1B)
0058 0A LD A,(BC) --- Down arrow, no shift (0A)
0059 1A LD A,(DE) --- Down arrow, shift (00)
005A 08 EX AF,AF' --- Left arrow, no shift (08)
005B 1809 JR 0066H --- Left arrow, shift (18): Right arrow, ns (09)
005D 19 ADD HL,DE --- Right arrow, shift (19)
005E 2020 JR NZ,0080H --- Space, ns (20): Space, shift (20)
0060 0B DEC BC --- Decrement cycle count *** Delay **** see note--> *
0061 78 LD A,B --- Test if count zero
0062 B1 OR C --- Combine LSB/MSB of count
0063 20FB JR NZ,0060H --- Loop until delay count exhausted
0065 C9 RET --- Rtn to caller
0066 310006 LD SP,0600H --- Reset IPL entry ******************** Reset *******
0069 3AEC37 LD A,(37ECH) --- Get controller status see note-->
006C 3C INC A --- Test for controller present
006D FE02 CP 02H --- Status usually FF if no EI
006F D20000 JP NC,0000H --- NC if controller addressable. Join common IPL code

64

0005 * ***
0008 : RST 08 with next input symbol.

: Syntax error if unequal

002E * ***

0033 * ***

0038 : JP(4518H) Entry pt. for all interrupts
003B * ***

0049 * ***

0050 * Table for keyboard routine at 3E3H **************************
*
* ASCII values for ENTER, CLEAR, BREAK, UP ARROW,
* DOWN ARROW, LEFT ARROW, RIGHT ARROW and SPACE

0060 * Delay for ((BC-1) * 26 + 17) * 2.255T-states ****************

0066 * ***
: Status = 00 - If EI (Expansion Interface) present and DISK
: 80 - If EI and DISK not ready :ready
: FF - If EI off or not present

65

0072 C3CC06 JP 06CCH --- No disk go to BASIC 'READY' prompt
0075 118040 LD DE,4080H --- Here on power on or reset with no disk ***********
0078 21F718 LD HL,18F7H --- Move initialization data to communication area
007B 012700 LD BC,0027H --- Number of bytes to move
007E EDB0 LDIR --- Move ROM 18F7-191D to RAM 4080-40A6 see note-->
0080 21E541 LD HL,41E5H --- Continue with comm. region initialization
0083 363A LD (HL),3AH --- 3A to 41E5 LD A,(2C00)
0085 23 INC HL --- Bump to 41 E6
0086 70 LD (HL),B --- 0 to 41 E6
0087 23 INC HL --- Bump to 41 E7
0088 362C LD (HL),2CH --- 2C to 41 E7
008A 23 INC HL --- HL = 41E8. Set input buffer pointer (40A7)
008B 22A740 LD (40A7H),HL --- to keyboard buffer area (41 E8)
008E 112D01 LD DE,012DH --- Addr field for JP instr
0091 061C LD B,1CH --- Initialize 4152-41A5 to JP 12D this gives an L3
0093 215241 LD HL,4152H --- Error if disk basic commands are attempted
0096 36C3 LD (HL),0C3H --- C3 to 4152 gives (JP 2D)
0098 23 INC HL --- Bump to LSB of address field
0099 73 LD (HL),E --- 2D to 4153 gives (JP 012D) 23
009A 23 INC HL --- Bump to MSB of address field
009B 72 LD (HL),D --- 01 to 4154 gives (JP 012D)
009C 23 INC HL --- Bump to addr. of next JP instr
009D 10F7 DJNZ 0096H --- Repeat 28 times (84 locations)
009F 0615 LD B,15H --- loop count for DOS EXIT RETURNS
00A1 36C9 LD (HL),0C9H --- C9 to 41 A6 gives (RETURN INSTRUCTION)
00A3 23 INC HL - 41A9: Ret Clear DOS EXIT vectors
00A4 23 INC HL - : to RETURNS
00A5 23 INC HL - 41E2: Ret
00A6 10F9 DJNZ 00A1H --- repeat: (gives JP 012D) in locs 4152 - 41A5
00A8 21E842 LD HL,42E8H --- Load HL with addr so we can store
00AB 70 LD (HL),B --- 0 to 42 E8
00AC 31F841 LD SP,41F8H --- Stack addr. during IPL is 41F8
00AF CD8F1B CALL 1B8FH --- Initialize BASIC printers and variables
00B2 CDC901 CALL 01C9H --- Clear screen
00B5 210501 LD HL,0105H --- 'MEMORY SIZE ?' message pntr
00B8 CDA728 CALL 28A7H --- Output message
00BB CDB31B CALL 1BB3H --- Print '? ' and wait for user input
00BE 38F5 JR C,00B5H --- If break was hit, ask again
00C0 D7 RST 10H --- Examine a character from response
00C1 B7 OR A --- Set status flags
00C2 2012 JR NZ,00D6H --- Jmp if not end of response
00C4 214C43 LD HL,434CH --- If CR only entered, then determine cont-->
00C7 23 INC HL --- Start at 17220 and work towards 65535 testing for
00C8 7C LD A,H --- LSB of next test addr :memory
00C9 B5 OR L --- Combine w/MSB of next test addr
00CA 281B JR Z,00E7H --- Memory up thru 65535 scanned. cont-->
00CC 7E LD A,(HL) --- Fetch original contents of memory test location
00CD 47 LD B,A --- Save it for restoration
00CE 2F CPL --- Complement it (gives test pattern)
00CF 77 LD (HL),A --- Store test pattern.
00D0 BE CP (HL) --- Compare contents of mem loc with test pattern
00D1 70 LD (HL),B --- Restore original value
00D2 28F3 JR Z,00C7H --- Address exists. Go test for min amt of memory
00D4 1811 JR 00E7H --- Address non-existent. Bump to next addr & test
00D6 CD5A1E CALL 1E5AH --- Get binary equivalent of value :again
00D9 B7 OR A --- into DE/A
00DA C29719 JP NZ,1997H --- SN error if NZ
00DD EB EX DE,HL --- HL - memory size
00DE 2B DEC HL --- Size minus one • Test memory size value
00DF 3E8F LD A,8FH --- Comparison value • make sure it's there.

66

0075 * ***

007E : Load division support routine. Initialize comm. region to:
: 4080 - 408D Division support routine
: 408E 1E4A Address of user subroutine
: 4090 E64DDB Random number seed
: 4093 IN A,(00) INP skeleton instruction .
: 4095 RET
: 4096 OUT A,00 OUTP skeleton instruction.
: 4098 RET
: 4099 00 Last character typed
: 409A 00 Error count
: 409B 00 Count of chars in current line
: 409C Output device type
: 40AD 00 Size of display line (64 characters)
: 409E 30 Line size during PRINT

: 40A0 - 434C Start of string area
: 40A2 FEFF Initial BASIC line number
: 40A4 42E9 Address of PROGRAM STATEMENT TABLE (PST)

00C4 : men. size dynamically

00CA : Go test for min amt required

67

00E1 46 LD B,(HL) --- Fetch contents of memory and save in B reg
00E2 77 LD (HL),A --- Store test pattern
00E3 BE CP (HL) --- Compare test pattern stored with pattern in A reg
00E4 70 LD (HL),B --- Restore original value of memory location
00E5 20CE JR NZ,00B5H --- Specified memory size not present, ask again
00E7 2B DEC HL --- Amt of memory - 2
00E8 111444 LD DE,4414H --- DE = 17428 (dec.)
00EB DF RST 18H --- Test for a minimum amount of mem (17428)
00EC DA7A19 JP C,197AH --- OM error if C. Insufficient memory
00EF 11CEFF LD DE,0FFCEH --- Load constant for default size of see note-->
00F2 22B140 LD (40B1H),HL --- Save memory size
00F5 19 ADD HL,DE --- Subtract size of string area from see note-->
00F6 22A040 LD (40A0H),HL --- Save starting addr of string area
00F9 CD4D1B CALL 1B4DH --- Initialize all BASIC variables and pointers
00FC 211101 LD HL,0111H ---'RADIO . . .BASIC' message pntr
00FF CDA728 CALL 28A7H --- Output message
0102 C3191A JP 1A19H --- Go to ready routine
0105 4D LD C,L --- M ** 'MEMORY SIZE' message ***********************
0106 45 LD B,L --- E
0107 4D LD C,L --- M
0108 4F LD C,A --- 0
0109 52 LD D,D --- R
010A 59 LD E,C --- y
010B 2053 JR NZ,0160H --- Space, S
010D 49 LD C,C --- I
010E 5A LD E,D --- Z
010F 45 LD B,L --- E
0110 00 NOP --- 00 - message terminator
0111 52 LD D,D --- R ** 'RADIO SHACK LEVEL II BASIC' message ********
0112 41 LD B,C --- A
0113 44 LD B,H --- D
0114 49 LD C,C --- I
0115 4F LD C,A --- 0
0116 2053 JR NZ,016BH --- Space, S
0118 48 LD C,B --- H
0119 41 LD B,C --- A
011A 43 LD B,E --- C
011B 4B LD C,E --- K
011C 204C JR NZ,016AH --- Space, L
011E 45 LD B,L --- E
011F 56 LD D,(HL) --- V
0120 45 LD B,L --- E
0121 4C LD C,H --- L
0122 2049 JR NZ,016DH --- Space, I
0124 49 LD C,C --- I
0125 2042 JR NZ,0169H --- Space, B
0127 41 LD B,C --- A
0128 53 LD D,E --- S
0129 49 LD C,C --- I
012A 43 LD B,E --- C
012B 0D DEC C --- 0D - carriage return
012C 00 NOP --- 00 - end of message terminator
012D 1E2C LD E,2CH --- Code for L3 error ***************************
012F C3A219 JP 19A2H --- Jump to error routine and print L3 error
0132 D7 RST 10H --- Position to next character ** (POINT/SET/RESET)
0133 AF XOR A --- A = 0 if POINT entered else POINT (x,y)
0134 013E80 LD BC,803EH --- 0135 LD A,80 SET routine A = -1 SET (x,y)
0137 013E01 LD BC,013EH --- 0138 LD A,01 RESET routine A = +1 RESET (x,y)
013A F5 PUSH AF --- Save flag indicating POINT/SET/RESET entry
013B CF RST 08H --- Examine next char, look for (

68

00EF : string area (50 dec. bytes)

00F5 : ending memory addr.

0105 * ***

0111 * ***

012D * ***

0132 * ***

69

013C 28CD JR Z,010BH --- 13C: DC 28 (for RST 08
013E 1C INC E --- 13D: CALL 2BlC go evaluate 1st variable (x)
013F 2B DEC HL --- Result in A-reg
0140 FE80 CP 80H --- Compare x coordinate to 128 dec.
0142 D24A1E JP NC,1E4AH --- FC error if x => 128
0145 F5 PUSH AF --- Save x coordinate
0146 CF RST 08H --- Examine next symbol in input string
0147 2C INC L --- Make sure its a , (comma)
0148 CD1C2B CALL 2B1CH --- Go evaluate 2nd variable (y)
014B FE30 CP 30H --- Result in A-reg. Compare to 48 dec.
014D D24A1E JP NC,1E4AH --- FC error if y => 48
0150 16FF LD D,0FFH --- Prepare to divide y coordinate by 3 giving Q+R
0152 14 INC D <----: D = Q
0153 D603 SUB 03H • : Divide by compound subtraction
0155 30FB JR NC,0152H ---->: Loop till remainder < 3
0157 C603 ADD A,03H --- Make remainder positive
0159 4F LD C,A --- And store it in C :
015A F1 POP AF --- A = x coordinate :
015B 87 ADD A,A --- Times 2 see note ---> :
015C 5F LD E,A --- E = 2 times x :
015D 0602 LD B,02H --- B = shift count :
015F 7A LD A,D <----: Right shift D/E (Q,2*x) :
0160 1F RRA • : Two places so that
0161 57 LD D,A • : Bit 1 of E is left in the
0162 7B LD A,E • : Carry. This bit will be
0163 1F RRA • : zero if we're on the first column
0164 5F LD E,A • : of a rectangular box, and one if
0165 10F8 DJNZ 015FH ---->: we're on the 2nd column.
0167 79 LD A,C --- Now, compute position of point within
0168 8F ADC A,A --- the word according to the formula
0169 3C INC A --- (2*R)+1+(0 or 1 for column 1 or 2)
016A 47 LD B,A --- Save bit position count
016B AF XOR A --- Clear A and carry flag then
016C 37 SCF --- force CARRY on.
016D 8F ADC A,A <---: Build a bit mask to position a one over
016E 10FD DJNZ 016DH --->: the point we're looking for. Save mask in C.
0170 4F LD C,A --- Compute word address for box, store in DE
0171 7A LD A,D --- Mask for bit we want
0172 F63C OR 3CH --- A = Q from y/3
0174 57 LD D,A --- Restore so that DE = addr of box we want
0175 1A LD A,(DE) --- Fetch the bits for this box
0176 B7 OR A --- and ret the status flag
0177 FA7C01 JP M,017CH --->: Jump if graphics word
017A 3E80 LD A,80H -- : Else, make it a graphics word
017C 47 LD B,A <---: B = bits for this display box
017D F1 POP AF --- Get entry point flag
017E B7 OR A --- And test it
017F 78 LD A,B --- A = bits for this box
0180 2810 JR Z,0192H --- Jump if POINT called
0182 12 LD (DE),A --- Restore box contents
0183 FA8F01 JP M,018FH --- Jump if SET called else
0186 79 LD A,C --- This must be-a RESET call
0187 2F CPL --- Turn bit to be RESET off
0188 4F LD C,A --- Save mark with bit off in C reg
0189 1A LD A,(DE) --- Fetch box from memory
018A A1 AND C --- Turn specified bit off
018B 12 LD (DE),A --- And restore. Then we're
018C CF RST 08H --- Done, prepare to exit after testing for)
018D 29 ADD HL,HL --- DC)
018E C9 RET --- Return to caller

70

0150 : Compute the memory address for the specified point. Graphics
: area in memory ranges from 3C00 - OFF. Each six bit (2X3)
: box is represented by an 8 bit byte starting at 3D00. The

: boxes are stored in memory as a string of 6 bits, right
: justified in the byte. The bits in the byte are numbered
: from right to left (as you would expect) starting at 0 and
: going thru 5. Bits 6 & 7 are unused.
: Rectangular coordinates within the box are represented in
: the box 'byte' as follows: bits 0 & 1 represent the first
: row, points 0 and one respectively; bits 2 & 3 correspond
: to the second row, bits 0 and 1, respectively; etc.

71

018F B1 OR C --- SET continues **** Turn on bit in box ************
0190 18F9 JR 018BH --- Restore box and rtn to caller
0192 A1 AND C --- POINT continues ** Isolate bit we're testing for**
0193 C6FF ADD A,0FFH --- If bit was on, overflow will occur
0195 9F SBC A,A --- A = 0 if bit off, = -1 if bit on
0196 E5 PUSH HL --- Save current code string address
0197 CD8D09 CALL 098DH --- Save 00 (false) or -1 (true) as current value
019A E1 POP HL --- Restore code string addr
019B 18EF JR 018CH --- Test for closing paren & return to caller
019D D7 RST 10H --- INKEY$ routine * Position to next char in code str
019E E5 PUSH HL --- Save current code string addr
019F 3A9940 LD A,(4099H) --- Get last char typed during keyboard scan (shift
01A2 B7 OR A --- Set status flags @ key)
01A3 2006 JR NZ,01ABH --- Jmp if shift @ key struck else
01A5 CD5803 CALL 0358H --- Scan keyboard once
01A8 B7 OR A --- Set status flags for result
01A9 2811 JR Z,01BCH --- Jmp if no input
01AB F5 PUSH AF --- Save char typed
01AC AF XOR A --- Clear A-reg status flags
01AD 329940 LD (4099H),A --- Clear shift @ key character
01B0 3C INC A --- A = 1, size of character string to be built
01B1 CD5728 CALL 2857H --- Make sure there is room for char string, cont-->
01B4 F1 POP AF --- A = char typed
01B5 2AD440 LD HL,(40D4H) --- HL = addr of string in literal string pool area
01B8 77 LD (HL),A --- Save character
01B9 C38428 JP 2884H --- Move string to literal string pool area
01BC 212819 LD HL,1928H --- Load address of 'READY' message and **************
01BF 222141 LD (4121H),HL --- move to current string variable point
01C2 3E03 LD A,03H --- Data type = String
01C4 32AF40 LD (40AFH),A --- Set current type to string
01C7 E1 POP HL --- Message address to HL
01C8 C9 RET --- Rtn to caller
01C9 3E1C LD A,1CH --- Clear screen ************** Home cursor command **
01CB CD3A03 CALL 033AH --- Send to video
01CE 3E1F LD A,1FH --- Clear screen command
01D0 C33A03 JP 033AH --- Send to video then return
01D3 ED5F LD A,R --- Load current refresh addr **** RANDOM routine ****
01D5 32AB40 LD (40ABH),A --- Save random value : see note -->
01D8 C9 RET --- Rtn to caller
01D9 2101FC LD HL,0FC01H --- Set bit 0 of 4 bit data latch ********************
01DC CD2102 CALL 0221H --- OUT (FF) 01
01DF 060B LD B,0BH --- B = count for delay loop
01E1 10FE DJNZ 01E1H --- B = count for delay loop = 80 US
01E3 2102FC LD HL,0FC02H --- Set bit 1 of 4 bit data latch
01E6 CD2102 CALL 0221H --- OUT (FF) 02
01E9 060B LD B,0BH --- B = count for delay loop see note -->
01EB 10FE DJNZ 01EBH --- Delay 3.25X10-6 * 11 * 2.26 a 80 US
01ED 2100FC LD HL,0FC00H --- Clear bits 0 and 1 of 4 bit data latch
01F0 CD2102 CALL 0221H --- OUT (FF) 00
01F3 065C LD B,5CH --- B = delay loop count 92
01F5 10FE DJNZ 01F5H --- Delay = 3.25X10-6 * 92 * 2.26 = 676 US
01F7 C9 RET --- Rtn to caller
01F8 E5 PUSH HL --- Entry to turn off cassette ***********************
01F9 2100FB LD HL,0FB00H --- HL = command to turn off cassette
01FC 181B JR 0219H --- Go to cassette driver
01FE 7E LD A,(HL) --- Get next token from input string *****************
01FF D623 SUB 23H --- Test for #
0201 3E00 LD A,00H --- A = unit 0 if care of no # x specification
0203 200D JR NZ,0212H --- Jmp if not #
0205 CD012B CALL 2B01H --- Get unit number in DE cont-->

72

018F * ***

0192 * ***

019D * ***

01B1 : Save length, addr at 4023

01BC * ***

01C9 * ***

01D3 * (Uses refresh register contents)*****************************

01D9 * ***

01E1 : Write one bit on cassette. Assume motor has been turned
: on. Called to write clock pulses Requires three steps
: consisting of an
: OUT (FF) 01
: OUT (FF) 02
: OUT (FF) 00
: Total time for clock pulse is 836 US

01F8 * ***

01FE * ***

0205 : (as integer in 'current' area) in DE

73

0208 CF RST 08H --- Look for comma following unit number
0209 2C INC L --- DC 2C Comma
020A 7B LD A,E --- Convert unit from
020B A2 AND D --- - XX to its positive
020C C602 ADD A,02H --- Equivalent
020E D24A1E JP NC,1E4AH --- FC error if NC
0211 3D DEC A --- A = positive value for unit number
0212 32E437 LD (37E4H),A --- Entry to define drive **** Select cassette unit **
0215 E5 PUSH HL --- Save current code string address
0216 2104FF LD HL,0FF04H --- Code to turn on cassette
0219 CD2102 CALL 0221H --- Turn drive on/off
021C E1 POP HL --- Restore code string addr
021D C9 RET --- Rtn to caller
021E 2100FF LD HL,0FF00H --- Mask for preserving video controller flags
0221 3A3D40 LD A,(403DH) --- Get video control bits (32/64 char)
0224 A4 AND H --- Combine with cassette
0225 B5 OR L --- Control bits :controller)
0226 D3FF OUT (0FFH),A --- Write reg A to port 255 (cassette/video
0228 323D40 LD (403DH),A --- Save new value as current control value
022B C9 RET --- Return to caller
022C 3A3F3C LD A,(3C3FH) --- Blink '*' when reading cassette ******* cont --> *
022F EE0A XOR 0AH --- Gives 2A/20/2A . . . *, ,*, ,. . .
0231 323F3C LD (3C3FH),A --- Store new display value
0234 C9 RET --- Rtn to caller
0235 C5 PUSH BC --- Entry to read cassette **************** cont --> *
0236 E5 PUSH HL --- Saves callers register
0237 0608 LD B,08H --- B = number of bits to read
0239 CD4102 CALL 0241H --- Read 1 bit. Assembled into a byte in the A-reg
023C 10FB DJNZ 0239H --- Loop till 8 bits (one byte) read
023E E1 POP HL --- Restore caller's
023F C1 POP BC --- register
0240 C9 RET --- Return
0241 C5 PUSH BC --- Read 1 data bit from cassette ********* cont --> *
0242 F5 PUSH AF --- Save caller's registers
0243 DBFF IN A,(0FFH) <---: Begin tape motion. Stop when first start pulse
0245 17 RLA • :Input and test for clock pulse :is sensed
0246 30FB JR NC,0243H • :Not there, loop till it shows up
0248 0641 LD B,41H --->: Now delay for 476 micro seconds
024A 10FE DJNZ 024AH --- After sensing start pulse
024C CD1E02 CALL 021EH --- Reset outsig flip/flop so we can read data pulse
024F 0676 LD B,76H --- Then delay for 865 micro seconds before reading
0251 10FE DJNZ 0251H --- The data pulse
0253 DBFF IN A,(0FFH) --- Read data pulse
0255 47 LD B,A --- Save it as B
0256 F1 POP AF --- A = prior bits for this byte
0257 CB10 RL B --- Shift data bit into carry flag
0259 17 RLA --- Combine this data bit with others
025A F5 PUSH AF --- Save byte thus far
025B CD1E02 CALL 021EH --- Reset outsig flip/flop
025E F1 POP AF --- Restore data byte
025F C1 POP BC --- Other registers
0260 C9 RET --- And return
0261 CD6402 CALL 0264H --- Call 0264 to write clock pulse
0264 E5 PUSH HL --- Entry to write byte
0265 C5 PUSH BC --- Save caller's registers
0266 D5 PUSH DE --- BC
0267 F5 PUSH AF --- DE see note ---->
0268 0E08 LD C,08H --- C = no of bits to write
026A 57 LD D,A --- D = data word to be written bit by bit
026B CDD901 CALL 01D9H --- Write clock bit

74

0212 * ***

022C * Fetch display word that holds an ****************************

0235 * Reads one byte then returns *********************************

0241 * Called 8 times to read one byte *****************************

0265 : Writing a byte is done by serially writing each bit in
: the byte. Each bit is preceeded by a clock pulse followed
: by another pulse if the bit is a one or no pulse if the
: bit is a zero. The time from the clock pulse to the bit
: pulse is approx 1 millisecond

75

026E 7A LD A,D --- Get byte to be written
026F 07 RLCA --- Set status (carry) if upper bit is one else no
0270 57 LD D,A --- Save shifted data byte : carry
0271 300B JR NC,027EH --- Jmp if high bit is zero see note -->
0273 CDD901 CALL 01D9H --- Else write a one bit
0276 0D DEC C --- Count of bits written from this byte
0277 20F2 JR NZ,026BH --- Not done, go write clock pulse then test data bit
0279 F1 POP AF --- Restore caller's register : AF
027A D1 POP DE --- DE
027B C1 POP BC --- BC
027C E1 POP HL --- and HL
027D C9 RET --- Rtn to caller
027E 0687 LD B,87H --- B = count of times to delay **********************
0280 10FE DJNZ 0280H --- Delay 3.25 * 10-6 * 135 * 2.26 = 991 US
0282 18F2 JR 0276H --- Go count no of bits written
0284 CDFE01 CALL 01FEH --- Get unit no and turn on motor ********************
0287 06FF LD B,0FFH --- Entry to write leader and sync byte
0289 AF XOR A --- A = data word to write (all zeroes)
028A CD6402 CALL 0264H --- Write 256 zeros
028D 10FB DJNZ 028AH --- Count one byte of zeroes written. Loop till 256
028F 3EA5 LD A,0A5H --- Trailer byte is A5 : bytes written
0291 18D1 JR 0264H --- Write trailer byte as A5 and rtn to caller
0293 CDFE01 CALL 01FEH --- Get unit no., turn on motor **********************
0296 E5 PUSH HL --- Entry to find leader and sync byte
0297 AF XOR A --- Zero A, status flags
0298 CD4102 CALL 0241H <---: Read cassette
029B FEA5 CP 0A5H • : Until a flag of 'A5' is found. We should skip
029D 20F9 JR NZ,0298H --->: over 256 bytes of zeroes before getting there
029F 3E2A LD A,2AH --- A = ASCII *
02A1 323E3C LD (3C3EH),A --- Display **
02A4 323F3C LD (3C3FH),A --- On screen
02A7 E1 POP HL --- Restore code string addr
02A8 C9 RET --- Rtn to caller
02A9 CD1403 CALL 0314H --- Go read 2 bytes from cassette ********* cont -->
02AC 22DF40 LD (40DFH),HL --- Save execution address
02AF CDF801 CALL 01F8H --- Turn off drive
02B2 CDE241 CALL 41E2H --- DOS Exit (JP 5B51)
02B5 318842 LD SP,4288H --- Set CSP below assumed load address
02B8 CDFE20 CALL 20FEH --- Print CR
02BB 3E2A LD A,2AH --- A = ASCII *
02BD CD2A03 CALL 032AH --- Print '*'
02C0 CDB31B CALL 1BB3H --- Wait for input from keyboard should be file name
02C3 DACC06 JP C,06CCH --- Jmp if BREAK key hit :to load
02C6 D7 RST 10H ---- Examine next character in input stream
02C7 CA9719 JP Z,1997H --- SN error if EOS
02CA FE2F CP 2FH --- It is a '/'
02CC 284F JR Z,031DH --- Jump if '/'
02CE CD9302 CALL 0293H --- Start up cassette. see note-->
02D1 CD3502 CALL 0235H <---: Read 1 byte
02D4 FE55 CP 55H • : Test for U
02D6 20F9 JR NZ,02D1H --->: Loop till an ASCII 'U' is read
02D8 0606 LD B,06H • : B = number of characters to match
02DA 7E LD A,(HL) <-----: Get a character from type in 2C0
02DB B7 OR A • : : Test for zero, end of name
02DC 2809 JR Z,02E7H • : : Go start load, else
02DE CD3502 CALL 0235H • : : Read 1 byte from cassette and
02E1 BE CP (HL) • : : Compare with type
02E2 20ED JR NZ,02D1H • : : Bump to next char of type
02E4 23 INC HL --->: : If no match, skip to next prog on cassette
02E5 10F3 DJNZ 02DAH ----->: Loop till 6 chars match or end of cont -->

76

0271 : (Go delay for approx 1 ms)

027E * **

0284 * **

0293 * ***

02A9 * Load an assembler program from cassette *********************

: Position to first data byte by skipping
: over leader until a U is found

02E5 : type in command

77

02E7 CD2C02 CALL 022CH --- Blink * on video during load
02EA CD3502 CALL 0235H --- Read a byte
02ED FE78 CP 78H <-------: Now test if byte is an upper case 8
02EF 28B8 JR Z,02A9H • : Yes, read next two bytes and save cont -->
02F1 FE3C CP 3CH • : Is it a <
02F3 20F5 JR NZ,02EAH • : No, read till '78' or '3C' found
02F5 CD3502 CALL 0235H • : Read number of bytes to load
02F8 47 LD B,A • : Save count of bytes to load
02F9 CD1403 CALL 0314H • : Read following two bytes (addr) into HL
02FC 85 ADD A,L • : Cksum starts with addr
02FD 4F LD C,A • : Save 8 bit cksum
02FE CD3502 CALL 0235H <--: • : Read a byte
0301 77 LD (HL),A • : • : Store it
0302 23 INC HL • : • : Bump store address
0303 81 ADD A,C • : • : Cksum data byte
0304 4F LD C,A • : • : Save cksum
0305 10F7 DJNZ 02FEH -->: • : Count 1 byte loaded
0307 CD3502 CALL 0235H • : Read cksum
030A B9 CP C • : Compare w/computed cksum
030B 28DA JR Z,02E7H • : Cksum OK, keep loading till a '78' found
030D 3E43 LD A,43H • : Cksum error. Display a C
030F 323E3C LD (3C3EH),A • : Store C in video memory
0312 18D6 JR 02EAH ------->: Scan till start of next program
0314 CD3502 CALL 0235H --- Read one byte from cassette **********************
0317 6F LD L,A --- Save LSB see note-->
0318 CD3502 CALL 0235H --- Read another byte from cassette
031B 67 LD H,A --- Save as MSB
031C C9 RET --- Rtn to caller
031D EB EX DE,HL --- DE = input response address **********************
031E 2ADF40 LD HL,(40DFH) --- 40DF = will hold execution address
0321 EB EX DE,HL --- HL = input addr DE = execution addr location.
0322 D7 RST 10H --- Test for CR if not CR then
0323 C45A1E CALL NZ,1E5AH --- Convert ASCII to binary. Result in DE
0326 208A JR NZ,02B2H --- Jmp if no digits found
0328 EB EX DE,HL --- Else digit is execution address
0329 E9 JP (HL) --- Jmp to addr given in /XXXX command
032A C5 PUSH BC --- Output (A) to screen, printer or tape ************
032B 4F LD C,A --- Save character to output
032C CDC141 CALL 41C1H --- Rtn if non-DOS
032F 3A9C40 LD A,(409CH) --- Get device type code
0332 B7 OR A --- Set status flags according to dev type
0333 79 LD A,C --- A = char to be written
0334 C1 POP BC --- Restore callers BC
0335 FA6402 JP M,0264H --- Write to tape
0338 2062 JR NZ,039CH --- Write to printer
033A D5 PUSH DE --- Write to video
033B CD3300 CALL 0033H --- Print
033E F5 PUSH AF --- Save character written
033F CD4803 CALL 0348H --- Test for display memory full
0342 32A640 LD (40A6H),A --- Update cursor position (0 - 3FH)
0345 F1 POP AF --- Restore character written
0346 D1 POP DE --- Restore caller's DE
0347 C9 RET --- Rtn to caller
0348 3A3D40 LD A,(403DH) --- Get video control word ***************************
034B E608 AND 08H --- Test for 32/64 char line
034D 3A2040 LD A,(4020H) --- Addr if cursor
0350 2803 JR Z,0355H --- Jump if 64 characters/line
0352 0F RRCA --- Force cursor position
0353 E61F AND 1FH --- to be between 3C00
0355 E63F AND 3FH --- and 3FFF

78

02EF : in 40DF. Wait for input

0314 * ***
0317 : Read 2 bytes from cassette and assemble as a 16 bit value

031D * ***

032A * ***

: :---------------------:
: -1 : cassette :
: 0 : video :
: +1 : printer :
:-----------------------:

0348 * ***

79

0357 C9 RET --- Rtn to caller
0358 CDC441 CALL 41C4H --- DOS Exit (JP 59CD) ***************************
035B D5 PUSH DE --- Save callers DE
035C CD2B00 CALL 002BH --- Scan keyboard
035F D1 POP DE --- Restore callers DE
0360 C9 RET --- Rtn to caller
0361 AF XOR A --- Keyboard input routine ***************************
0362 329940 LD (4099H),A --- Zero last char typed following break.
0365 32A640 LD (40A6H),A --- And current cursor position.
0368 CDAF41 CALL 41AFH --- DOS Exit (JP 598E)
036B C5 PUSH BC --- Save BC
036C 2AA740 LD HL,(40A7H) --- Buffer = 41E8 (usually)
036F 06F0 LD B,0F0H --- Length of buffer = 240
0371 CDD905 CALL 05D9H --- Go see what's being typed into buffer
0374 F5 PUSH AF --- Save flags
0375 48 LD C,B --- C = input length
0376 0600 LD B,00H --- BC = input length
0378 09 ADD HL,BC --- HL = end of input area ptr
0379 3600 LD (HL),00H --- Flag end of input with a 00H
037B 2AA740 LD HL,(40A7H) --- HL= input area ptr
037E F1 POP AF --- Restore flags
037F C1 POP BC --- Restore BC
0380 2B DEC HL --- HL = input area ptr - 1 see note-->
0381 D8 RET C --- Return w/carry set if BREAK key hit
0382 AF XOR A --- Else clear all status flags
0383 C9 RET --- Rtn with HL = input buffer -1
0384 CD5803 CALL 0358H --- Go scan keyboard *********************************
0387 B7 OR A --- Test for any key depressed
0388 C0 RET NZ --- Exit if key pressed
0389 18F9 JR 0384H --- Else, loop till some entry made
038B AF XOR A --- Clear A then *************************************
038C 329C40 LD (409CH),A --- Set output device = video
038F 3A9B40 LD A,(409BH) --- Get printer carriage position
0392 B7 OR A --- Set status flags
0393 C8 RET Z --- Return if printer buffer empty
0394 3E0D LD A,0DH --- Load char to print (carriage ret)
0396 D5 PUSH DE --- Save caller's DE
0397 CD9C03 CALL 039CH --- Call print driver
039A D1 POP DE --- Restore caller's DE
039B C9 RET --- Rtn to caller
039C F5 PUSH AF --- Save callers registers ************ see note -->
039D D5 PUSH DE --- DE
039E C5 PUSH BC --- and BC
039F 4F LD C,A --- C = character to be printed
03A0 1E00 LD E,00H --- E = new char/line count of 'C', 'D', or 'A'
03A2 FE0C CP 0CH --- Test for skip to next line :printed
03A4 2810 JR Z,03B6H ----->: Jmp if skip to next line
03A6 FE0A CP 0AH -- : Test for a line feed (A)
03A8 2003 JR NZ,03ADH -->: : Not LF, test for 'D' carriage ret
03AA 3E0D LD A,0DH -- : : Set next char to LP carriage ret
03AC 4F LD C,A -- : : Save LP carriage ret char
03AD FE0D CP 0DH <--:--: Test for second type of carriage ret
03AF 2805 JR Z,03B6H -- : Jmp if 'A' or 'D' carriage ret
03B1 3A9B40 LD A,(409BH) -- : Get count of characters in current line
03B4 3C INC A -- : Bump count for next char going out
03B5 5F LD E,A -- : Move count to E-reg so we can
03B6 7B LD A,E <--: Use common code
03B7 329B40 LD (409BH),A --- Save updated count of chars/this line
03BA 79 LD A,C --- Get char to be printed in A
03BB CD3B00 CALL 003BH --- Call line printer driver

80

0358 * ***

0361 * ***

0380 : (Required for RST 16 routine)

0384 * ***

038B * ***

039C * Call print driver on entry. Char to be printed in **********
: A-reg. If A = 'C', skip on line and reset count of
: characters in current line. If A = 'A' or 'D' print
: carriage return and reset character count for this line

81

03BE C1 POP BC --- Restore caller's register, BC
03BF D1 POP DE --- DE
03C0 F1 POP AF --- and AF
03C1 C9 RET --- Rtn to caller
03C2 E5 PUSH HL --- Driver entry routine *************** see note--> *
03C3 DDE5 PUSH IX --- Save registers B = entry code
03C5 D5 PUSH DE --- Load DCB addr DE = DCB addr
03C6 DDE1 POP IX --- into IX
03C8 D5 PUSH DE --- Save original contents of DE
03C9 21DD03 LD HL,03DDH --- HL = return address
03CC E5 PUSH HL --- Push return address onto stack
03CD 4F LD C,A --- Save char to be sent to device
03CE 1A LD A,(DE) --- Fetch 1st word from DCB
03CF A0 AND B --- Isolate device code bits
03D0 B8 CP B --- and compare w/entry code (B). If unequal
03D1 C23340 JP NZ,4033H --- goto driver via DOS Exit
03D4 FE02 CP 02H --- Clear status flags
03D6 DD6E01 LD L,(IX+01H) --- HL = driver address from DCB
03D9 DD6602 LD H,(IX+02H) --- Load MSB of driver addr
03DC E9 JP (HL) --- Go to driver routine
03DD D1 POP DE --- Return from driver routine
03DE DDE1 POP IX --- Restore registers, IX
03E0 E1 POP HL --- HL
03E1 C1 POP BC --- and BC
03E2 C9 RET --- Rtn to caller
03E3 213640 LD HL,4036H --- Keyboard driver routine ************ see note--> *
03E6 010138 LD BC,3801H --- BC = row A0 ptr
03E9 1600 LD D,00H --- D = column index
03EB 0A LD A,(BC) --- Load row N
03EC 5F LD E,A --- 8 column bits
03ED AE XOR (HL) --- XOR with previous
03EE 73 LD (HL),E --- Store column bits in buffer
03EF A3 AND E --- then test for active row
03F0 2008 JR NZ,03FAH --- Go if key active in row N
03F2 14 INC D --- Bump row index
03F3 2C INC L --- Seven byte buffer indexed by row
03F4 CB01 RLC C --- Step address from 3801 - 3840
03F6 F2EB03 JP P,03EBH --- Try next row
03F9 C9 RET --- No key depression - return
03FA 5F LD E,A --- Save column bits *********************************
03FB 7A LD A,D --- Row index 0 - 6
03FC 07 RLCA --- Row * 2
03FD 07 RLCA --- Row * 4
03FE 07 RLCA --- Row * 8
03FF 57 LD D,A --- Save in D
0400 0E01 LD C,01H --- Start with bit 0
0402 79 LD A,C --- Mask
0403 A3 AND E --- Test for non-zero column
0404 2005 JR NZ,040BH --- Go if found
0406 14 INC D --- Bump column number
0407 CB01 RLC C --- Align mask
0409 18F7 JR 0402H --- Try again
040B 3A8038 LD A,(3880H) --- Load shift bit
040E 47 LD B,A --- Shift bit to B
040F 7A LD A,D --- Row * 8 + column (0 - 7)
0410 C640 ADD A,40H --- Row * 8 + column (0 - 7) + 64 decimal
0412 FE60 CP 60H --- Test for first 4 row (@,A-Z)
0414 3013 JR NC,0429H --- Go if last 3 rows, numeric & special characters
0416 CB08 RRC B --- Shift to C
0418 3031 JR NC,044BH --- Go if no shift

82

03C2 * Entered on RST 14,1C,24 *************************************

03E3 * HL = keyboard work area ptr *********************************

03FA * ***

83

041A C620 ADD A,20H --- Set lower case
041C 57 LD D,A --- Adjusted character
041D 3A4038 LD A,(3840H) --- Get row 6 column bits
0420 E610 AND 10H --- Test for down arrow or CR
0422 2828 JR Z,044CH --- Go if no down arrow or CR
0424 7A LD A,D --- Reload adjusted value for key struck
0425 D660 SUB 60H --- Adjust to ASCII CR
0427 1822 JR 044BH --- Go to return
0429 D670 SUB 70H --- Test for last row (ENTER - SPACE)
042B 3010 JR NC,043DH --- Go if last row
042D C640 ADD A,40H --- Readjust for rows 4, 5
042F FE3C CP 3CH --- Convert rows 4, 5
0431 3802 JR C,0435H --- Jmp if (0-1-2-3-4-5-6-7-8-9-:-;-,) key struck
0433 EE10 XOR 10H --- Invert row 5 bits
0435 CB08 RRC B --- Ret if shift key down
0437 3012 JR NC,044BH --- Jmp if no
0439 EE10 XOR 10H --- then re-invert row 5 bits
043B 180E JR 044BH --- Go to output
043D 07 RLCA --- (Now (ROW * 8 + COLUMN - 48) * 2)
043E CB08 RRC B --- Test for shift
0440 3001 JR NC,0443H --- Go if no shift
0442 3C INC A --- Now (ROW*8 + COLUMN-48) * 2 + 5 = COLUMN * 2 + 1
0443 215000 LD HL,0050H --- Table of codes for last row
0446 4F LD C,A --- Ret C to value from 43D or 442
0447 0600 LD B,00H --- depending on shift. Set B = 0
0449 09 ADD HL,BC --- Index into table
044A 7E LD A,(HL) --- Get ASCII - like code
044B 57 LD D,A --- Save character
044C 01AC0D LD BC,0DACH --- Load delay count
044F CD6000 CALL 0060H --- Delay 20 milliseconds
0452 7A LD A,D --- A = ASCII - like character
0453 FE01 CP 01H --- Is it BREAK?
0455 C0 RET NZ --- Go if not
0456 EF RST 28H --- Yes, BREAK
0457 C9 RET --- Return
0458 DD6E03 LD L,(IX+03H) --- HL=cursor position ptr ************* see note--> *
045B DD6604 LD H,(IX+04H) --- Load MSB of current video buffer addr
045E 383A JR C,049AH --- Jmp if return last char request
0460 DD7E05 LD A,(IX+05H) --- Get cursor on/off flag
0463 B7 OR A --- Set status flags for cursor on/off
0464 2801 JR Z,0467H -->: Jmp if cursor off
0466 77 LD (HL),A -- : Move char overlaid by cursor to character buffer
0467 79 LD A,C <--: Get char to be displayed
0468 FE20 CP 20H --- Compare with space
046A DA0605 JP C,0506H --- Jump if control character
046D FE80 CP 80H --- Test for graphics word or compression code
046F 3035 JR NC,04A6H --- Jump if graphic or space compression character
0471 FE40 CP 40H --- Compare w/letter A
0473 3808 JR C,047DH --- Jmp if not alphabetic @ - Z
0475 D640 SUB 40H --- Subtract A to get 0 - 26 value for alpha
0477 FE20 CP 20H --- Test for lower case
0479 3802 JR C,047DH -->: Jmp if not lower case
047B D620 SUB 20H -- : Convert lower case to upper case
047D CD4105 CALL 0541H <--: Add new char to video display. Roll screen if
0480 7C LD A,H --- Force addr of next char to :necessary
0481 E603 AND 03H --- be in the range 3C00 <= X <3FFF
0483 F63C OR 3CH --- Force MSB of buffer addr to 3C - 3F
0485 67 LD H,A --- Move updated MSB of buffer addr to HL
0486 56 LD D,(HL) --- Get value of char at cursor position
0487 DD7E05 LD A,(IX+05H) --- Get cursor on/off flag

84

0458 * Display driver routine - Load LSB if current video *********
buffer addr.

85

048A B7 OR A --- Get status flags for cursor
048B 2805 JR Z,0492H --->: Jmp if cursor off
048D DD7205 LD (IX+05H),D -- : Else save character to be replaced by cursor
0490 365F LD (HL),5FH -- : Move () cursor to addr of next char position
0492 DD7503 LD (IX+03H),L <---: Save addr of next character
0495 DD7404 LD (IX+04H),H --- Position on screen in DCB (3 ,4)
0498 79 LD A,C --- Restore last character displayed
0499 C9 RET --- Rtn to caller
049A DD7E05 LD A,(IX+05H) --- Get cursor on/off switch see note-->
049D B7 OR A --- Set status flags for switch
049E C0 RET NZ --- If cursor on, exit with character
049F 7E LD A,(HL) --- It overlaid in A-reg else
04A0 C9 RET --- Get last char displayed
04A1 7D LD A,L --- Get LSB of current video buffer addr. ** cont--> *
04A2 E6C0 AND 0C0H --- Remove lower six bits giving value of XX00,
04A4 6F LD L,A --- XX40, XX80, or XXC0. 64 char/line assumed
04A5 C9 RET --- Rtn with new video buffer addr. in HL.
04A6 FEC0 CP 0C0H --- Check for space compression code *****************
04A8 38D3 JR C,047DH --- Graphic
04AA D6C0 SUB 0C0H --- Subtract conversion bias
04AC 28D2 JR Z,0480H --- Jmp if 0 blanks to be displayed
04AE 47 LD B,A --- B = count of blanks to be displayed
04AF 3E20 LD A,20H --- A = blank
04B1 CD4105 CALL 0541H --- Display a blank
04B4 10F9 DJNZ 04AFH --- Loop till B blanks displayed
04B6 18C8 JR 0480H --- Update pointer to video buffer and exit
04B8 7E LD A,(HL) --- Load char of current position and ** see note--> *
04B9 DD7705 LD (IX+05H),A --- Save cursor on/off in DCB
04BC C9 RET --- Rtn to caller
04BD AF XOR A --- Set cursor flag off
04BE 18F9 JR 04B9H --- Update video DCB and exit
04C0 21003C LD HL,3C00H --- H1 = start of video area ******* Home cursor *****
04C3 3A3D40 LD A,(403DH) --- Force 64 characters/line
04C6 E6F7 AND 0F7H --- Clear 32 char/line bit in command word
04C8 323D40 LD (403DH),A --- Save command word
04CB D3FF OUT (0FFH),A --- Send command word to video controller
04CD C9 RET --- Rtn to caller
04CE 2B DEC HL --- Backspace one char in line ********* see note--> *
04CF 3A3D40 LD A,(403DH) --- Get status of video controller
04D2 E608 AND 08H --- Test for 32/64 char per line
04D4 2801 JR Z,04D7H --- Go if 64 characters/line
04D6 2B DEC HL --- Backspace one more word if 64 char/line
04D7 3620 LD (HL),20H --- Replace previous char with a blank
04D9 C9 RET --- Rtn to caller
04DA 3A3D40 LD A,(403DH) --- Get status of video controller ***** see note--> *
04DD E608 AND 08H --- Isolate number of chars/line
04DF C4E204 CALL NZ,04E2H --- Call backspace cursor twice if 32 char line
04E2 7D LD A,L --- Save LSB of current cursor position
04E3 E63F AND 3FH --- Backspace LSB of cursor to previous line
04E5 2B DEC HL --- Then backspace cursor 1 character
04E6 C0 RET NZ --- Rtn if cursor on same line
04E7 114000 LD DE,0040H --- Else skip down one line
04EA 19 ADD HL,DE --- by adding 64 to current cursor addr
04EB C9 RET --- then rtn to caller
04EC 23 INC HL --- Bump current cursor **************** see note--> *
04ED 7D LD A,L --- addr by 1, fetch LSB of addr
04EE E63F AND 3FH --- and test for overflow into next line
04F0 C0 RET NZ --- No overflow, rtn to caller
04F1 11C0FF LD DE,0FFC0H --- Upward linefeed, add a
04F4 19 ADD HL,DE --- minus 64 to current cursor addr

86

049A : Return either current character or last character
: replaced by cursor

04A1 * Backspace pointer in video buffer to start of ***************
: current line. 64 char/line assumed

04A6 * ***

04B8 * cont--> use as cursor flag *********************************
: note--> Turn cursor on/off (control code processing)

04C0 * ***

04CE * Backspace cursor on video (control char processing) *********

04DA * Backspace cursor. Left arrow (control char processing) *****

04EC * Advance cursor. Right arrow (control char processing) ******

87

04F5 C9 RET --- Rtn to caller
04F6 3A3D40 LD A,(403DH) --- Get video control word ***************************
04F9 F608 OR 08H --- Turn on 32 char/line mode
04FB 323D40 LD (403DH),A --- Restore video control word
04FE D3FF OUT (0FFH),A --- Select 32 char/line
0500 23 INC HL --- Increment current position in video buffer
0501 7D LD A,L --- Force LSB to
0502 E6FE AND 0FEH --- an even value when in 32 char/line mode
0504 6F LD L,A --- Restore updated line addr to HL
0505 C9 RET --- Rtn to caller
0506 118004 LD DE,0480H --- Return addr after processing ******* see note--> *
0509 D5 PUSH DE --- To stack :control character
050A FE08 CP 08H --- Backspace and erase character
050C 28C0 JR Z,04CEH --- Jmp if backspace
050E FE0A CP 0AH --- Not backspace, test for A
0510 D8 RET C --- Ignore if control code < A (hex) except for 08
0511 FE0E CP 0EH --- Test for turn on cursor
0513 384F JR C,0564H --- Jmp if A-D (carriage return)
0515 28A1 JR Z,04B8H --- Jmp if turn on cursor
0517 FE0F CP 0FH --- Test for turn off cursor
0519 28A2 JR Z,04BDH --- Jmp if turn off cursor
051B FE17 CP 17H --- Test for select 32 char/line
051D 28D7 JR Z,04F6H --- Jmp if 32 select 32 char/line
051F FE18 CP 18H --- Left arrow
0521 28B7 JR Z,04DAH --- Jmp if left arrow
0523 FE19 CP 19H --- Right arrow
0525 28C5 JR Z,04ECH --- Jmp if right arrow
0527 FE1A CP 1AH --- Down arrow
0529 28BC JR Z,04E7H --- Jmp if down arrow
052B FE1B CP 1BH --- Up arrow
052D 28C2 JR Z,04F1H --- Jmp if up arrow
052F FE1C CP 1CH --- Home cursor
0531 288D JR Z,04C0H --- Jmp if home cursor
0533 FE1D CP 1DH --- Beginning of line
0535 CAA104 JP Z,04A1H --- Jmp if backspace to start of current line
0538 FE1E CP 1EH --- Erase to end of line
053A 2837 JR Z,0573H --- Jmp if delete rest of line
053C FE1F CP 1FH --- Clear to end of frame
053E 283C JR Z,057CH --- Jmp if CLEAR rest of screen
0540 C9 RET --- Ignore all others
0541 77 LD (HL),A --- Send character to display memory *** see note--> *
0542 23 INC HL --- Bump to next addr in display memory
0543 3A3D40 LD A,(403DH) --- Get status word for video
0546 E608 AND 08H --- Isolate characters/line flag
0548 2801 JR Z,054BH --->: Jmp if 32 char/line
054A 23 INC HL -- : 64 char/line. Bump one more word to cont-->
054B 7C LD A,H <---: Now, test if end of display mem reached
054C FE40 CP 40H --- If MSB of next avail word = 40, then end of meet
054E C0 RET NZ --- Rtn if not out of memory :reached
054F 11C0FF LD DE,0FFC0H --- DE = -64
0552 19 ADD HL,DE --- Backspace mem ptr 1 line. Prepare to roll screen
0553 E5 PUSH HL --- Save starting mem addr of bottom line up one line
0554 11003C LD DE,3C00H --- DE = addr 1st line
0557 21403C LD HL,3C40H --- HL = addr of 2nd line
055A C5 PUSH BC --- Save BC
055B 01C003 LD BC,03C0H --- BC = count of chars to move (15 lines)
055E EDB0 LDIR --- Move screen up one line
0560 C1 POP BC --- Restore BC
0561 EB EX DE,HL --- HL = addr of 16th (last) line
0562 1819 JR 057DH --- Go blank out 16th line

88

04F6 * ***

0506 * Process control characters for video All characters < 20H **

0541 * Moves new char to display buffer ****************************

054A : next addr in display mem

89

0564 7D LD A,L --- Get LSB of current char position
0565 E6C0 AND 0C0H --- And force its address to the start
0567 6F LD L,A --- Of the current line see note -->
0568 E5 PUSH HL --- Save starting line addr for current character
0569 114000 LD DE,0040H --- DE = number of characters (words) in a line
056C 19 ADD HL,DE --- Gives starting addr for next line
056D 7C LD A,H --- Now test EBB of next line addr
056E FE40 CP 40H --- Test for end of screen
0570 28E2 JR Z,0554H --- Jmp if end of screen (scroll up one line)
0572 D1 POP DE --- DE = starting addr for current line
0573 E5 PUSH HL --- Erase to end of line. HL = starting addr for next
0574 54 LD D,H --- Compute ending addr :line
0575 7D LD A,L --- For line blanking code below
0576 F63F OR 3FH --- Take addr in HL,
0578 5F LD E,A --- round it up to the next line
0579 13 INC DE --- number then
057A 1804 JR 0580H --- Jmp to the line blanking code
057C E5 PUSH HL --- Erase to end of frame
057D 110040 LD DE,4000H --- Test addr for end of loop check
0580 3620 LD (HL),20H <---: Move a blank to current char pos in line
0582 23 INC HL • : Bump to next char DOS
0583 7C LD A,H • : Test if end of line. Compare
0584 BA CP D • : MSB of current addr to 40 base 16
0585 20F9 JR NZ,0580H --->: Loop if not end of line
0587 7D LD A,L --- Then compare LSB of
0588 BB CP E --- addresses
0589 20F5 JR NZ,0580H --- Loop if not end of line
058B E1 POP HL --- Restore HL - (current char position addr)
058C C9 RET --- Rtn to caller
058D 79 LD A,C --- Print driver routine ** Get char to be printed ***
058E B7 OR A --- Set status flags
058F 2840 JR Z,05D1H --- If zero, then get printer status and return
0591 FE0B CP 0BH --- Skip to top of form code see note-->
0593 280A JR Z,059FH --- Yes go issue line feeds till next page reached
0595 FE0C CP 0CH --- Test for conditional skip to top of form
0597 201B JR NZ,05B4H ----->: Jmp if data char
0599 AF XOR A --- : Then clear A (gives null char to be printed)
059A DDB603 OR (IX+03H) --- : Get number of lines/page
059D 2815 JR Z,05B4H --- : If zero don't skip any lines
059F DD7E03 LD A,(IX+03H) --- : Get count of lines per page and
05A2 DD9604 SUB (IX+04H) --- : subtract lines printed this page so far, gives
05A5 47 LD B,A --- : B = no. of lines to skip to top of next page
05A6 CDD105 CALL 05D1H <---: : Get printer status
05A9 20FB JR NZ,05A6H --->: : Loop till not busy
05AB 3E0A LD A,0AH • : : Get a line feed character
05AD 32E837 LD (37E8H),A • : : Send it to the printer
05B0 10F4 DJNZ 05A6H --->: : Loop till we're at top of next page
05B2 1818 JR 05CCH --- : Reset line count for new page & rtn to caller
05B4 F5 PUSH AF <-----: Save print status
05B5 CDD105 CALL 05D1H <---: Get print status
05B8 20FB JR NZ,05B5H --->: Loop till not busy
05BA F1 POP AF --- Get character to print
05BB 32E837 LD (37E8H),A --- Send it to printer
05BE FE0D CP 0DH --- Carriage return?
05C0 C0 RET NZ --- Rtn to caller if data char
05C1 DD3404 INC (IX+04H) --- Bump count of lines printed this page
05C4 DD7E04 LD A,(IX+04H) --- Fetch line count for this page
05C7 DDBE03 CP (IX+03H) --- And compare to no of lines per page
05CA 79 LD A,C --- Restore print char to A (carriage ret)
05CB C0 RET NZ --- Exit if Daze not full

90

0567 : (Control code processing)

058D * ***
: Carriage control codes
: A = line feed + CR
: B = skip to top of form
: C = conditional skip to top of form
: D = CR

91

05CC DD360400 LD (IX+04H),00H --- Page full, reset line count for next page to zero
05D0 C9 RET --- Rtn to caller
05D1 3AE837 LD A,(37E8H) --- Get printer status word **************************
05D4 E6F0 AND 0F0H --- Isolate status
05D6 FE30 CP 30H --- Test for printer selected and ready
05D8 C9 RET --- Rtn with status zero if selected & ready
05D9 E5 PUSH HL --- Input routine HL points to input area ** cont--> *
05DA 3E0E LD A,0EH --- Code to turn on cursor HL = Start of buffer
05DC CD3300 CALL 0033H --- Turn on cursor B = Buffer size
05DF 48 LD C,B --- C = buffer size Exit with carry if
05E0 CD4900 CALL 0049H <---: Return when key is pressed BREAK hit
05E3 FE20 CP 20H • : Test for SPACE
05E5 3025 JR NC,060CH • : Not a space but displayable if NC
05E7 FE0D CP 0DH • : Test for carriage ret.
05E9 CA6206 JP Z,0662H • : Jmp if CR
05EC FE1F CP 1FH • : Test for CLEAR
05EE 2829 JR Z,0619H • : Jmp if CLEAR
05F0 FE01 CP 01H • : Test for BREAK
05F2 286D JR Z,0661H • : Jmp if BREAK
05F4 11E005 LD DE,05E0H • : Push rtn addr of 05 E0 onto stack in case
05F7 D5 PUSH DE • : character is none of the following
05F8 FE08 CP 08H • : Test for backspace and erase char.
05FA 2834 JR Z,0630H • : Jmp if backspace / erase
05FC FE18 CP 18H • : Backspace cursor
05FE 282B JR Z,062BH • : Jmp if backspace
0600 FE09 CP 09H • : Horizontal tab
0602 2842 JR Z,0646H • : Jmp if horizontal tab
0604 FE19 CP 19H • : Select 32 char/line
0606 2839 JR Z,0641H • : Jmp if line size selection
0608 FE0A CP 0AH • : Test for line feed
060A C0 RET NZ • : Return to 5E0 if not a line feed
060B D1 POP DE • : Remove 5E0 as a rtn addr
060C 77 LD (HL),A • : He hit a printable character (save it)
060D 78 LD A,B • : 240 - count of characters fetched
060E B7 OR A • : Set status
060F 28CF JR Z,05E0H • : If end of buffer ignore unless BRK or CR
0611 7E LD A,(HL) • : Reload char just entered
0612 23 INC HL • : Bump buffer address
0613 CD3300 CALL 0033H • : Print the character just received
0616 05 DEC B • : Count 1 char received
0617 18C7 JR 05E0H --->: Get next character
0619 CDC901 CALL 01C9H --- He hit CLEAR : CLS Clear screen
061C 41 LD B,C --- Reset count of characters transmitted
061D E1 POP HL --- Reset buffer address
061E E5 PUSH HL --- Save buffer origin on stack
061F C3E005 JP 05E0H --- Go get next character (first char of buffer)
0622 CD3006 CALL 0630H --- Go wait for next key
0625 2B DEC HL --- Backup to previous character (one before CR)
0626 7E LD A,(HL) --- Fetch it and test for a LF
0627 23 INC HL --- Restore buffer addr to next avail position
0628 FE0A CP 0AH --- Was previous char a -line feed
062A C8 RET Z --- yes, rtn
062B 78 LD A,B --- No, test for buffer full. A = count of chars
062C B9 CP C --- Received minus size of buffer
062D 20F3 JR NZ,0622H --- Loop if room for more data
062F C9 RET --- Rtn (buffer full)
0630 78 LD A,B --- B = characters received C = size of buffer ******
0631 B9 CP C --- Test if buffer full
0632 C8 RET Z --- Exit if buffer full
0633 2B DEC HL --- Backspace to previous character

92

05D1 * ***

05D9 * Accept keyboard input ***************************************

0630 * ***

93

0634 7E LD A,(HL) --- And fetch it
0635 FE0A CP 0AH --- Test for a line feed
0637 23 INC HL --- Bump to last character received
0638 C8 RET Z --- Exit if previous char was a line feed
0639 2B DEC HL --- Backspace over last char in buffer
063A 3E08 LD A,08H --- Backspace screen command
063C CD3300 CALL 0033H --- Print backspace
063F 04 INC B --- Adjust char received count
0640 C9 RET --- Exit
0641 3E17 LD A,17H --- Send position command ****************************
0643 C33300 JP 0033H --- To video control unit and exit
0646 CD4803 CALL 0348H --- Go wait for next key ******************* cont--> *
0649 E607 AND 07H --- Isolate lower 3 bits of ASCII value
064B 2F CPL --- Gives inverse of value
064C 3C INC A --- Gives value 1 <= X <= 8
064D C608 ADD A,08H --- Clears upper bits of counter
064F 5F LD E,A --- Save count of blanks to add
0650 78 LD A,B <---: Get amt of space left in buffer
0651 B7 OR A • : Test for full buffer
0652 C8 RET Z • : Exit if buffer full
0653 3E20 LD A,20H • : Load an ASCII space into A-reg
0655 77 LD (HL),A • : Store space in buffer
0656 23 INC HL • : Bump to next location in buffer
0657 D5 PUSH DE • : Save callers DE
0658 CD3300 CALL 0033H • : Display blank
065B D1 POP DE • : Restore DE
065C 05 DEC B • : Decrement count of bytes left in buffer
065D 1D DEC E • : Count one spaced added to buffer
065E C8 RET Z • : Exit if specified number of blanks added
065F 18EF JR 0650H --->: Else loop till buffer full or count zero
0661 37 SCF --- CARRY flag set if BREAK hit. *********** cont--> *
0662 F5 PUSH AF --- He hit a CR see note-->
0663 3E0D LD A,0DH --- A = CR terminates buffer
0665 77 LD (HL),A --- Save terminator in buffer
0666 CD3300 CALL 0033H --- Print it (CR)
0669 3E0F LD A,0FH --- Cursor off code
066B CD3300 CALL 0033H --- Turn cursor off via driver call
066E 79 LD A,C --- C = buffer size
066F 90 SUB B --- Minus (buffer size - chars processed)
0670 47 LD B,A --- Gives chars in buffer
0671 F1 POP AF --- Restore status flag carry cont-->
0672 E1 POP HL --- HL = start of buffer address
0673 C9 RET --- Return to original caller
0674 D3FF OUT (0FFH),A --- 0 to cassette ************** Video controller ****
0676 21D206 LD HL,06D2H --- Addr. of video/keyboard/printer DCB's
0679 110040 LD DE,4000H --- Start of communications region
067C 013600 LD BC,0036H --- Setup for block move
067F EDB0 LDIR --- Move 6D2-707 to 4000-4035
0681 3D DEC A --- Change value being sent to port FF to FFFD, . . .
0682 3D DEC A --- FFFB,
0683 20F1 JR NZ,0676H --- Go thru this 128 times
0685 0627 LD B,27H --- 0 to A
0687 12 LD (DE),A --- 0 to 4036-4062
0688 13 INC DE --- Bump destination pntr
0689 10FC DJNZ 0687H --- Go if not done
068B 3A4038 LD A,(3840H) --- Test keyboard for BREAK
068E E604 AND 04H --- BREAK key hit
0690 C27500 JP NZ,0075H --- Go if BREAK
0693 317D40 LD SP,407DH --- New stack area
0696 3AEC37 LD A,(37ECH) --- Load disk status

94

0641 * ***

0646 * No. of blanks to produce ******** HT key during input *******
: Pad buffer with specified
: number of blanks or until
: buffer is full.
: Number of blanks added is:
: HT 0 - 8 : HT 5 - 3
: 1 - 7 : 6 - 2
: 2 - 6 : 7 - 1
: 3 - 5 : 8 - 0
: 4 - 4 :

0661 * Else reset *** BREAK key during input ***********************
0662 : CR during input

0671 : Set if BREAK -Not set if CR

0674 * ***

95

0699 3C INC A --- Test for Expansion Interface
069A FE02 CP 02H --- and disk drive
069C DA7500 JP C,0075H --- Go if no disk
069F 3E01 LD A,01H --- Unit select mask for drive 0
06A1 32E137 LD (37E1H),A --- Select drive 0
06A4 21EC37 LD HL,37ECH --- Addr of disk command / status register
06A7 11EF37 LD DE,37EFH --- Addr of disk data register
06AA 3603 LD (HL),03H --- 3 to disk command register = restore, position
06AC 010000 LD BC,0000H --- Delay count :to track 0
06AF CD6000 CALL 0060H --- Delay for approx 3 seconds
06B2 CB46 BIT 00H,(HL) --- Test if controller busy,
06B4 20FC JR NZ,06B2H --- Loop till not busy
06B6 AF XOR A --- 0 to A
06B7 32EE37 LD (37EEH),A --- 0 to sector register
06BA 010042 LD BC,4200H --- BC = addr of buffer area
06BD 3E8C LD A,8CH --- A = read command
06BF 77 LD (HL),A --- Read sector 0, track 0 into 4200 - 4455
06C0 CB4E BIT 01H,(HL) --- Test if data ready
06C2 28FC JR Z,06C0H --- Go if no data avail
06C4 1A LD A,(DE) --- Get next byte from disk
06C5 02 LD (BC),A --- Transfer data to 4200+
06C6 0C INC C --- Bump buffer pntr
06C7 20F7 JR NZ,06C0H --- Go if not 256 bytes
06C9 C30042 JP 4200H --- Done, transfer to TRSDOS loader
06CC 01181A LD BC,1A18H --- Addr of BASIC READY routine (rtn addr) ***********
06CF C3AE19 JP 19AEH --- Initialize BASIC's variables & pntrs ** cont--> *
06D2 C3961C JP 1C96H * 4000 *--- RST 08 vector JP 1C96 (compare) **********
06D5 C3781D JP 1D78H * 4003 *--- RST 10 vector JP 1D78 (get next char)
06D8 C3901C JP 1C90H * 4006 *--- RST 18 vector JP 1C90 (compare DE:HL)
06DB C3D925 JP 25D9H * 4009 *--- RST 20 vector JP 25D9 (test data type)
06DE C9 RET * 400C *--- RST 28 vector RET (JP 4BA2 for DOS)
06DF 00 NOP *
06E0 00 NOP *
06E1 C9 RET * 400E *--- RST 30 vector RET (JP 44B4 for DOS)
06E2 00 NOP *
06E3 00 NOP * 4012 *--- RST 38 vector DI/RET (JP 4518 for DOS)
06E4 FB EI * :Interrupt entry point vector
06E5 C9 RET *
06E6 00 NOP *
06E7 01E303 LD BC,03E3H * 4015 *--- Keyboard DCB *****************************
06EA 00 NOP *
06EB 00 NOP * Driver addr = 3E3
06EC 00 NOP *
06ED 4B LD C,E *
06EE 49 LD C,C * 401D *--- Video DCB ********************************
06EF 07 RLCA *
06F0 58 LD E,B *
06F1 04 INC B *
06F2 00 NOP * Driver addr = 458
06F3 3C INC A *
06F4 00 NOP *
06F5 44 LD B,H *
06F6 4F LD C,A * 4025 *--- Line printer DCB *************************
06F7 068D LD B,8DH *
06F9 05 DEC B *
06FA 43 LD B,E * Driver addr = 58D
06FB 00 NOP *
06FC 00 NOP *
06FD 50 LD D,B *
06FE 52 LD D,D **

96

06CC * ***
06CF * then goto 1A18 (BASIC READY routine)
06D2 * The contents of 6D2 - 707 are moved to location

* 4000 - 4035 in the Communications Region
* during the first stage of the IPL sequence

06E7 * ***

06EE * ***

06F6 * ***

06FE * ***

97

06FF C30050 JP 5000H * 402D *--- Changed by SYS 0 to JP 4400
0702 C7 RST 00H * 4030 *--- Changed by SYS 0 to LD A,A3
0703 00 NOP *
0704 00 NOP * 4043 *--- Changed by SYS 0 to RST 28
0705 3E00 LD A,00H * 4033 *--- Changed by SYS 0 to 44BB
0707 C9 RET *
0708 218013 LD HL,1380H --- Address of the single precision routines *********
070B CDC209 CALL 09C2H --- Load a SP number pointed to by HL into BC/DE
070E 1806 JR 0716H --- Go add SP no. in registers to 4121 - 4124
0710 CDC209 CALL 09C2H --- Load current value into BC/DE
0713 CD8209 CALL 0982H --- Invert sign of value in WRA1 : see notes -->
0716 78 LD A,B --- Get exponent for register value
0717 B7 OR A --- Set status flags for exponent
0718 C8 RET Z --- If exponent = 0, then no. in registers is zero
0719 3A2441 LD A,(4124H) --- Now, get exponent of the other number
071C B7 OR A --- and test its exponent
071D CAB409 JP Z,09B4H --- Exit if it is zero.
0720 90 SUB B --- A = current exp - Reg. exp = bits to scale
0721 300C JR NC,072FH --- Register value has smallest exp. & therefore is
0723 2F CPL --- smaller. Make diff in exponents positive. Also
0724 3C INC A --- reverse registers and current values so that
0725 EB EX DE,HL --- smallest one is in registers.
0726 CDA409 CALL 09A4H --- Put SP no. in '4121-4124' onto stack
0729 EB EX DE,HL --- Restore HL to addr of second value
072A CDB409 CALL 09B4H --- Put SP no. in registers into '4121 - 4124'
072D C1 POP BC --- Load SP no. saved on stack at 0726 above.
072E D1 POP DE --- If difference in exponent > 24, then no. cannot be
072F FE19 CP 19H --- added because of difference in magnitude.
0731 D0 RET NC --- Save number of places to right shift register
0732 F5 PUSH AF --- value so its exponent = exponent of current value
0733 CDDF09 CALL 09DFH --- Turn on MS bit of both values to be added. Save
0736 67 LD H,A --- sign determination in H. A = no. of bit position
0737 F1 POP AF --- to right shift BC/CE scale value in registers so
0738 CDD707 CALL 07D7H --- it is equivalent to current value. Go unpack
073B B4 OR H --- value in BC/DE. Set status flags for sign of
073C 212141 LD HL,4121H --- Load addr of WRA1 :register value
073F F25407 JP P,0754H --- Jump if value in registers is negative.
0742 CDB707 CALL 07B7H --- Add a SP no in CDE to SP no. pointed to by
0745 D29607 JP NC,0796H --- HL. Sum in CDE. Jump if coefficient
0748 23 INC HL --- same size else
0749 34 INC (HL) --- increase exponent by 1
074A CAB207 JP Z,07B2H --- error if exponent overflows to zero.
074D 2E01 LD L,01H --- L = number of bits to shift
074F CDEB07 CALL 07EBH --- Right shift coefficient 1 place.
0752 1842 JR 0796H --- Go normalize value & rtn to caller
0754 AF XOR A --- Clear A, status flags *************** see note--> *
0755 90 SUB B --- 0-exponent = -exponent
0756 47 LD B,A --- Save negative of exponent
0757 7E LD A,(HL) --- Load LSB of mem. value
0758 9B SBC A,E --- Minus LSB of reg. value
0759 5F LD E,A --- E = new LSB reg. value
075A 23 INC HL --- Bump to middle byte of mem. value
075B 7E LD A,(HL) --- Load middle byte of mem. value
075C 9A SBC A,D --- Subtract middle byte of reg. value
075D 57 LD D,A --- D = new MSB of reg. value
075E 23 INC HL --- Bump to MSB of mem. value
075F 7E LD A,(HL) --- Load MSB of mem. value
0760 99 SBC A,C --- Minus MSB of reg. value
0761 4F LD C,A --- C = new MSB of reg. value
0762 DCC307 CALL C,07C3H --- If carry go convert reg. value to cont-->

98

0708 * Single precision addition routines (5 entry points) ********

0708 : This entry point loads a .5 into BC/DE
: then adds it to the value in WRA1

070B : This entry point loads a SP value, pointed to by HL
: into and then adds it to WRA1

0710 : Loads SP value pointed to by HL into BC/DE. Then
: inverts the sign of WRA1 value, before adding
: BC/DE and WRA1

0713 : This entry point inverts the sign of the value
: in WRA1 before adding it to BC/DE

0716 : Adds WRA1 to BC/DE, leaves sum in WRA1

0754 * Adds a negative SP value in BC/DE to a positive *************
: SP value pointed to by HL. Result left in BC/DE

: its positive equivalent

99

0765 68 LD L,B --- L = exponent of original reg. value see note-->
0766 63 LD H,E --- H = least sig. byte
0767 AF XOR A --- Clear A, status.
0768 47 LD B,A <---: B = count of bytes tested
0769 79 LD A,C • : Load next byte of new reg. value(MSB/middle/LSB)
076A B7 OR A • : Test if EBB is zero
076B 2018 JR NZ,0785H • : Jmp if MSB non-zero (go normalize reg. value)
076D 4A LD C,D • : This is a circular see note-->
076E 54 LD D,H • : Left shift of 8 bits
076F 65 LD H,L • : C <-- D <-- H
0770 6F LD L,A • : H <-- L <-- A
0771 78 LD A,B • : Zero in B gets propagated until a non-zero byte
0772 D608 SUB 08H • : or all 3 bytes of reg. value have tested
0774 FEE0 CP 0E0H • : Test if all 3 bytes of value tested
0776 20F0 JR NZ,0768H --->: Jmp if no
0778 AF XOR A --- Yes, value is zero
0779 322441 LD (4124H),A --- Zero exponent
077C C9 RET --- Rtn to caller
077D 05 DEC B <---: Count 1 left shift *************** see note--> *
077E 29 ADD HL,HL • : Shift HL left 1 bit
077F 7A LD A,D • : Then shift D left 1 bit
0780 17 RLA • : Picking up any carry from HL
0781 57 LD D,A • : Restore shifted D
0782 79 LD A,C • : Then shift C left 1 bit
0783 8F ADC A,A • : Picking up any carry from D
0784 4F LD C,A • : Restore shifted C
0785 F27D07 JP P,077DH --->: Loop till CDHL is normalized
0788 78 LD A,B --- A = count of bits shifted left
0789 5C LD E,H --- Save HL so we can
078A 45 LD B,L --- use it for addr of exponent
078B B7 OR A --- Test count of bits shifted
078C 2808 JR Z,0796H --->: Jump if reg value already normalized or negative
078E 212441 LD HL,4124H • : HL = addr. of original exponent of reg. value
0791 86 ADD A,(HL) • : Add shifted count to bias
0792 77 LD (HL),A • : Store result as exponent
0793 30E3 JR NC,0778H • : Set exponent to zero if value < 2**24
0795 C8 RET Z • : Rtn with WRA1 = zero if exponent is zero
0796 78 LD A,B <---: Load least sig. byte of value
0797 212441 LD HL,4124H --- Addr. of exponent to HL see note-->
079A B7 OR A --- Test if any bits in LSB
079B FCA807 CALL M,07A8H --->: if so go test for overflow
079E 46 LD B,(HL) • : otherwise load the exponent into B
079F 23 INC HL • : Bump to 4025 (contains sign of result)
07A0 7E LD A,(HL) • : then load the sign. Isolate it so
07A1 E680 AND 80H • : that it can be combined with new exponent
07A3 A9 XOR C • : Clear sign bit of MSB
07A4 4F LD C,A • : B=exponent, C=MSB, D=next MSB, E=LSB
07A5 C3B409 JP 09B4H • : Store SP number in BC, DE into 4121-4124.
07A8 1C INC E <---: Bump least sig. byte ************* see note--> *
07A9 C0 RET NZ --- Exit if no overflow
07AA 14 INC D --- Go on to next byte. Bump it
07AB C0 RET NZ --- Exit if no overflow
07AC 0C INC C --- Go on to next byte. Bump it
07AD C0 RET NZ --- Exit if no overflow
07AE 0E80 LD C,80H --- Set value to -0
07B0 34 INC (HL) --- Bump exponent
07B1 C0 RET NZ --- Exit if we have not overflowed
07B2 1E0A LD E,0AH --- OV error code
07B4 C3A219 JP 19A2H --- Output OV error message
07B7 7E LD A,(HL) --- Load LSB of memory value

100

: Part I of integer to SP conversion
: On entry C=MSB, D=middle byte, E=MSB of integer to be converted
: If both bytes are zero, set the exponent to zero (4124),
: the other three bytes are already zero. If the integer
: is not zero, locate the first non-zero byte and go to
: 785-77D to normalize (shift it left until the most
: significant bit is 1) it.

076D : ------- Rotate reg. value left 8 bits.
: : If entire value is zero set exponent to zero & exit
: : C <-- D <-- H <-- L <-- A

077D * Part II of integer to SP conversion
: Shift CDHL left as a single unit the MS bit of
: L->H, MS bit of H->D, MS bit of D->C. Shifting
: stops when the MS bit of C is shifted into bit
: 15. A count of the number of shifts necessary
: is kept in B as a negative number.

: Part III of integer to SP conversion. Clear sign
: of mantissa (it was set neg during the normalization
: process above). Setup registers for storing
: result.

 07A8 * Return to caller for negative
: numbers, zeros have been
: converted to all ones. Now,
: convert all the trailing zeros
: (which are now ones) back to
: zeros. Also used to test for
: overflow when creating a
: SP number.

: Add 3 bytes of a SP number in C D/E

101

07B8 83 ADD A,E --- Add to LSB of register value
07B9 5F LD E,A --- Save new LSB
07BA 23 INC HL --- Bump to middle byte of memory value
07BB 7E LD A,(HL) --- Load middle byte of memory value : see note-->
07BC 8A ADC A,D --- Add middle byte of register value
07BD 57 LD D,A --- Save new middle byte
07BE 23 INC HL --- Bump to MSB of memory value
07BF 7E LD A,(HL) --- Load MSB of memory value
07C0 89 ADC A,C --- Add MSB of register value
07C1 4F LD C,A --- Save new MSB
07C2 C9 RET --- Rtn to caller
07C3 212541 LD HL,4125H --- Reset sign flag so that ************ see note--> *
07C6 7E LD A,(HL) --- mantissa will have a negative sign
07C7 2F CPL --- Invert the sign flag
07C8 77 LD (HL),A --- Store sign flag
07C9 AF XOR A --- Zero A
07CA 6F LD L,A --- then save it
07CB 90 SUB B --- Complement B (0 - B)
07CC 47 LD B,A --- Save new value of B
07CD 7D LD A,L --- Reload zero into A
07CE 9B SBC A,E --- Complement E (0 - E)
07CF 5F LD E,A --- Save new value for E
07D0 7D LD A,L --- Reload A with zero
07D1 9A SBC A,D --- Complement D (0 - D)
07D2 57 LD D,A --- Save new D value
07D3 7D LD A,L --- Reload A with zero
07D4 99 SBC A,C --- Complement C (0 - C)
07D5 4F LD C,A --- Save new C value
07D6 C9 RET ---Rtn to caller *********** Unpack a SP number ******
07D7 0600 LD B,00H <--: On entry, A = no bits to right shift
07D9 D608 SUB 08H ---:>: If carry, then shift right (A) bits,
07DB 3807 JR C,07E4H • : : else shift number right one byte
07DD 43 LD B,E • : : This code thru 07 E2
07DE 5A LD E,D • : : shifts 00CDE such
07DF 51 LD D,C • : : that afterwards we have E00CD
07E0 0E00 LD C,00H -->: : Loop to see if must right shift another byte
07E2 18F5 JR 07D9H <----: Make shift count positive
07E4 C609 ADD A,09H --- And move it to L
07E6 6F LD L,A --- Clear status flags
07E7 AF XOR A --- Decrement shift count
07E8 2D DEC L --- Exit if done
07E9 C8 RET Z --- Now, right shift BCDE one bit at a time as a unit
07EA 79 LD A,C --- Right shift C one position, put bit 0 of C into
07EB 1F RRA --- Restore C :carry
07EC 4F LD C,A --- Now, right shift D one place. Bit 0 of C becomes
07ED 7A LD A,D --- Bit 0 of D to carry : bit 8 of D
07EE 1F RRA --- Restore D
07EF 57 LD D,A --- Right shift E one bit. Bit 0 of D becomes bit 8
07F0 7B LD A,E --- Bit 0 of E to carry : of E
07F1 1F RRA --- Restore E
07F2 5F LD E,A --- Finally right shift B one bit.
07F3 78 LD A,B --- Bit 0 of E becomes
07F4 1F RRA --- bit 7 of B. Bit 0 of B is lost.
07F5 47 LD B,A --- Loop till (L) bits shifted. cont-->
07F6 18EF JR 07E7H --- **
07F8 00 NOP --- 07F8 - 07FB = SP 1.0
07F9 00 NOP ---
07FA 00 NOP ---
07FB 81 ADD A,C --- Count of following SP values (03)
07FC 03 INC BC --- Coefficients for power series used in LN comp

102

: To 3 bytes of a SP number pointed
: to by HL - One of the numbers must
: have been scaled so its exponent is
: the same as the other. A carry
: from a LSB is added to the MSB, etc.
: On exit A=MSB, carry flag set if
: coefficient has increased and there-
: fore the exponent must be adjusted.
: Zero otherwise. Sum left in C D/E

07C3 * This routine converts a 4 byte negative integer into its ****
: twos complement positive equivalent so it can be converted
: to SP state, the SP sign flag (4125) is also
: complemented. This will insure a negative coefficient after
: normalization.

07D7 * ***

07F6 : Integer portion left in C/D/E. Fractional part left in B.
07F8 * ***

103

07FD AA XOR D --- 07FD - 0800 = .5988
07FE 56 LD D,(HL) ---
07FF 19 ADD HL,DE ---
0800 80 ADD A,B --- 0801 - 0804 = .96145
0801 F1 POP AF ---
0802 227680 LD (8076H),HL --- 0805 - 0808 = 2.88539
0805 45 LD B,L ---
0806 AA XOR D ---
0807 3882 JR C,078BH ---
0809 CD5509 CALL 0955H --- Test sign of current SP number **** LOG routine **
080C B7 OR A --- Set status flags according to sign : see note-->
080D EA4A1E JP PE,1E4AH --- Error if value is negative
0810 212441 LD HL,4124H --- HL = addr of exponent of current value
0813 7E LD A,(HL) --- A = exponent of current value
0814 013580 LD BC,8035H --- BC/DE = .707092
0817 11F304 LD DE,04F3H --- (approx in 2)
081A 90 SUB B --- Scale value so it's <1
081B F5 PUSH AF --- Save scale factor
081C 70 LD (HL),B --- Force exponent of current value to be same as
081D D5 PUSH DE --- constant in BC/DE
081E C5 PUSH BC --- Save constant in BC/DE on stack
081F CD1607 CALL 0716H --- Add constant in BC/DE to current value
0822 C1 POP BC --- Restore constant
0823 D1 POP DE --- into BC/DE
0824 04 INC B --- Bump exponent. Multiply constant by 2**1 or
0825 CDA208 CALL 08A2H --- Divide 1.4141 (approx in 4) by scaled value +
0828 21F807 LD HL,07F8H --- HL = add of SP 1.0 : 1n 2
082B CD1007 CALL 0710H --- Load BC/DE with 1.0 and subtract from current
082E 21FC07 LD HL,07FCH --- Addr of table of 3 S.P. values :value
0831 CD9A14 CALL 149AH --- Call series routine to evaluate sum cont-->
0834 018080 LD BC,8080H --- BC = -.5
0837 110000 LD DE,0000H ---
083A CD1607 CALL 0716H --- Add (-.5) to current value
083D F1 POP AF --- Restore scale factor from 81A above
083E CD890F CALL 0F89H --- Scale current value to original magnitude
0841 013180 LD BC,8031H --- Load BC/DE with .693115
0844 111872 LD DE,7218H --- then multiply sum from series by .693115
0847 CD5509 CALL 0955H --- Test sign & exponent ******************* cont--> *
084A C8 RET Z --- Exit if exponent is zero
084B 2E00 LD L,00H --- L = 00 means add exponents
084D CD1409 CALL 0914H --- Add exponents together. Set most sig bit of MSB
0850 79 LD A,C --- for each value.
0851 324F41 LD (414FH),A --- 414F = MSB of register value
0854 EB EX DE,HL ---
0855 225041 LD (4150H),HL --- 4150 - 4151 = next MSB of register value
0858 010000 LD BC,0000H --- BC = 00
085B 50 LD D,B --- DE = 00
085C 58 LD E,B ---
085D 216507 LD HL,0765H --- Integer to SP conversion called after
0860 E5 PUSH HL --- multiplication to convert result to SP.
0861 216908 LD HL,0869H --- We will go there after unpacking the SP
0864 E5 PUSH HL --- numbers. Now, put 869 on stack twice so
0865 E5 PUSH HL --- we'll unpack each SP number.
0866 212141 LD HL,4121H --- HL = address of current value
0869 7E LD A,(HL) --- Test LSB for zero
086A 23 INC HL --- HL = addr. of next MSB
086B B7 OR A --- A = LSB of current SP value
086C 2824 JR Z,0892H --- Jmp if LSB is zero (do a circular cont-->
086E E5 PUSH HL --- Save addr of next MSB
086F 2E08 LD L,08H --- L = count of bits to right shift cont-->

104

0809 * ***
* Method used:
* 1. Test sign of value. If negative exit with FC error.
* 2. Scale the value so it is between 0.5 and 1. Save the
* count of bits used for scaling
* 3. Recompute scaled value as
* x = 1 - (2 In 2 / (x + In 2))
* 4. Evaluate
* ((x**2 * c0 + cl) x**2 + c2)x
* 5. Subtract 0.5 from final term of series
* 6. Add the shift count to the result of step 5
* 7. Multiply result of step 6 by In 2

: of coeff. (I)*value(I)**2I+2 for I=-2

0847 * of current SP number **
: Single precision multiplication -------
: Multiply BC/DE by current value. Use shift and add method.
: Unpack each number first then we shift and add.

086C : right shift of one byte) then go get next byte.

086E : SP number (or until it's right justified

105

0871 1F RRA <--: Right shift LSB 1 position
0872 67 LD H,A • : Save shifted LSB
0873 79 LD A,C • : Load MSB into A
0874 300B JR NC,0881H • : Jmp there when no one bit shifted from LSB
0876 E5 PUSH HL • : else save shifted LSB and count
0877 2A5041 LD HL,(4150H) • : Addr of middle & LSB bytes of orig register value
087A 19 ADD HL,DE • : Add to total thus far far (compound add)
087B EB EX DE,HL • : and leave sum in proper register
087C E1 POP HL • : Restore shifted LSB and shift count
087D 3A4F41 LD A,(414FH) • : then add MSB of original register value
0880 89 ADC A,C • : to the accumulated total
0881 1F RRA • : Right shift MSB
0882 4F LD C,A • : Save shifted MSB see notes-->
0883 7A LD A,D • : Load middle byte so
0884 1F RRA • : we can right shift it 1 bit
0885 57 LD D,A • : Save shifted middle byte
0886 7B LD A,E • : Load LSB and
0887 1F RRA • : right shift it 1 bit
0888 5F LD E,A • : then move it back
0889 78 LD A,B • : Load exponent
088A 1F RRA • : Right shift it
088B 47 LD B,A • : and restore it
088C 2D DEC L • : Decrement count of bits tested
088D 7C LD A,H • : Restore original LSB value to A
088E 20E1 JR NZ,0871H -->: Loop till all 8 bits tested
0890 E1 POP HL --- Restore HL to addr. of next byte
0891 C9 RET --- And rtn
0892 43 LD B,E ** see note--> *
0893 5A LD E,D --- Left circular shift BC/DE one byte. B is
0894 51 LD D,C --- lost and C is replaced by A. Shift appears
0895 4F LD C,A --- as follows: A BC/DE
0896 C9 RET --- A->C C->D D->E E->B
0897 CDA409 CALL 09A4H --- Move value in WRA1 onto stack
089A 21D80D LD HL,0DD8H --- Addr of floating pt. 10.
089D CDB109 CALL 09B1H --- Load flt. pt. 10 into BC/DE and move into
08A0 C1 POP BC --- Reload original value :(4121 - 4124)
08A1 D1 POP DE --- of WRA1 into BC/DE
08A2 CD5509 CALL 0955H --- Single precision division routine ****** cont--> *
08A5 CA9A19 JP Z,199AH --- Error - division by zero attempted
08A8 2EFF LD L,0FFH --- L = FF means subtract exponents
08AA CD1409 CALL 0914H --- Compute new exponent by addition. Set most sig.
08AD 34 INC (HL) --- bit of each value, ret sign of result in 4125.
08AE 34 INC (HL) --- Add 2 to exponent of dividend
08AF 2B DEC HL --- HL = 4123 = MSB of current value
08B0 7E LD A,(HL) --- Load MSB of value in WRA1
08B1 328940 LD (4089H),A --- 4089 = MSB of current value
08B4 2B DEC HL --- HL = addr of next most sig byte
08B5 7E LD A,(HL) --- A = next most sig byte
08B6 328540 LD (4085H),A --- 4085 = most sig byte of current value
08B9 2B DEC HL --- HL = addr of least sig byte
08BA 7E LD A,(HL) --- Load LSB and move it to
08BB 328140 LD (4081H),A --- 4081 = next most sig byte of current value
08BE 41 LD B,C --- B = most sig byte of register value
08BF EB EX DE,HL --- DE = 4122, HL = MSB/LSB register value
08C0 AF XOR A --- now, set
08C1 4F LD C,A --- MSB, next MSB
08C2 57 LD D,A --- LSB of register value
08C3 5F LD E,A --- to zero
08C4 328C40 LD (408CH),A --- Zero count of times doubling B/HL overflows
08C7 E5 PUSH HL --- Save divisor in BC/HL on stack

106

: Examine current value for ones by using a
: right shift and test carry method. For
: each one bit found, add the register value
: (now in 414F - 4151) to the current value
: repeat process until all bits positions in
: current value have been tested.

: Get MSB register value and add to MSB
: current value, then continue.

: Right justify current value in registers to get
: integer equivalent of value. Right shift
: D/E. Shift D first, bit 1 goes to carry
: which will be picked up when E is shifted.
: Result is left in BC/DE as an un-normalized
: floating point number. 4124 (exponent of
: current value holds adjusted exponent).

0892 * Called by single precision multiplying *********************
: while unpacking SP numbers before multiplying them

0897 * **

08A2 * Test sign of value in WRA1 **********************************

107

08C8 C5 PUSH BC --- BC = most sig byte of reg value/00
08C9 7D LD A,L --- A=LSB register value. Now compute dividend-divisor
08CA CD8040 CALL 4080H --- Subtract current value from reg. value cont-->
08CD DE00 SBC A,00H --- On exit A=0, carry=1 if reg value<current value
08CF 3F CCF --- Reset carry so carry=1 if reg value>current value
08D0 3007 JR NC,08D9H --->: Jmp if reg value<current value. Go double
08D2 328C40 LD (408CH),A -- : Save count of times B/HL overflows :divisor
08D5 F1 POP AF -- : Clear last division from stack
08D6 F1 POP AF -- : We didn't need it
08D7 37 SCF -- : Set carry flag.
08D8 D2C1E1 JP NC,0E1C1H <---: 8D9: POP BC Restore last divisor so
08DB 79 LD A,C --- 8DA: POP HL We can double it
08DC 3C INC A --- but first test for possible overflow
08DD 3D DEC A --- by division out of HL into BC
08DE 1F RRA --- Test bit 0 of C, if it is on
08DF FA9707 JP M,0797H --- Done: Go normalize result
08E2 17 RLA --- Clear possible CARRY ON
08E3 7B LD A,E --- Shift E left one position. cont-->
08E4 17 RLA --- Pick up bit 8 of A-reg,
08E5 5F LD E,A --- Restore shifted E. Most sig. bit in CARRY
08E6 7A LD A,D --- Shift D left one position
08E7 17 RLA --- Pick up bit 8 from E becomes bit 0 of D
08E8 57 LD D,A --- Restore shifted D. Most sig. bit in CARRY
08E9 79 LD A,C --- Shift C left one position
08EA 17 RLA --- Pick up bit 8 from D becomes bit 0 of C
08EB 4F LD C,A --- Restore shifted C
08EC 29 ADD HL,HL --- Now, double the divisor so that eventually it
08ED 78 LD A,B --- will exceed the dividend. When it does, the
08EE 17 RLA --- quotient plus reminder will be in B/HL as reg.
08EF 47 LD B,A --- values. Carry any overflow from shifting HL left
08F0 3A8C40 LD A,(408CH) --- one place to B. Then shift B left one place. Keep
08F3 17 RLA --- count of overflow amt of B in 408C as a bit
08F4 328C40 LD (408CH),A --- string. i.e. the number of ones equals the
08F7 79 LD A,C --- number of times overflow occurred
08F8 B2 OR D --- now combine all bytes
08F9 B3 OR E --- of the register value and
08FA 20CB JR NZ,08C7H --- loop until divisor overflows
08FC E5 PUSH HL --- Save HL
08FD 212441 LD HL,4124H --- Exponent of saved value
0900 35 DEC (HL) --- Decrement it by 1 for: (A**X)/(B**Y)=(A/B)**(X-Y)
0901 E1 POP HL --- Restore HL
0902 20C3 JR NZ,08C7H --- Continue with shift and decrement loop
0904 C3B207 JP 07B2H --- OV error (exponent has gone to zero)
0907 3EFF LD A,0FFH --- Computes new exponent for flt. pt. multiplication*
0909 2EAF LD L,0AFH --- 090A: XOR A Zero A, clear flags
090B 212D41 LD HL,412DH --- HL = addr of MSB for WRA2 DP value
090E 4E LD C,(HL) --- C = MSB, saved value : see note -->
090F 23 INC HL --- HL = addr of exponent for WRA2 DP value
0910 AE XOR (HL) --- Make exp pos/neg depending on entry used
0911 47 LD B,A --- Save exponent in B
0912 2E00 LD L,00H --- Mask for testing exponent sign of WRA1 (force
0914 78 LD A,B --- Ref etch exponent & test for zero : sign +)
0915 B7 OR A --- Set status flags
0916 281F JR Z,0937H --- WRA1 value is zero
0918 7D LD A,L --- Not zero. Get exponent for WRA1 value
0919 212441 LD HL,4124H --- Which we already know is non-zero
091C AE XOR (HL) --- Combine sign of exp WRA1 with mask cont --> *
091D 80 ADD A,B --- Now, add the exponents for the two values to be
091E 47 LD B,A --- multiplied and save in B-reg. Addition should
091F 1F RRA --- produce a carry. Now test for presence.

108

08CA : (4081-4089). Result in B/HL

0813 : Shift C/D/E left as one unit. Bits carried out of E are
: shifted into D, etc.

0907 * **

: When entered at 0917 it is the callers
: responsibility to load the L register
: according to the sign of the value
: in WRA1. L = 0 if WRA1 >= 0,
: L = FF if WRA1 < 0

091C * in L. Note : The second entry at 0917

109

0920 A8 XOR B --- Of carry by shifting it into bit 8 and doing
0921 78 LD A,B --- an exclusive OR with new exponent see note->
0922 F23609 JP P,0936H --- Jmp if sum of exponent is out of range
0925 C680 ADD A,80H --- Reload new exponent into A and turn on bit 8
0927 77 LD (HL),A --- Store new exponent
0928 CA9008 JP Z,0890H --- Jmp if value is exactly zero
092B CDDF09 CALL 09DFH --- Turn on MSB of current value so it can be
092E 77 LD (HL),A --- unpacked for repetitive addition.
092F 2B DEC HL --- HL = next most sig byte
0930 C9 RET --- Return to caller
0931 CD5509 CALL 0955H --- Go test sign of floating pt. number in WRA1 ******
0934 2F CPL --- Reverse the results so A = minus if value +, and
0935 E1 POP HL --- is positive if value is minus.
0936 B7 OR A --- Set status flags according to new exponent
0937 E1 POP HL --- Clear stack
0938 F27807 JP P,0778H --- Set current floating point value to zero & return
093B C3B207 JP 07B2H --- OV error exit
093E CDBF09 CALL 09BFH --- Load a SP no. from 4121 - 4124 ***** see note--> *
0941 78 LD A,B --- B = Exponent, C = MSB, D = Next MSB, E = LSB
0942 B7 OR A --- Set status flags according to new exponent
0943 C8 RET Z --- Exit if number is zero
0944 C602 ADD A,02H --- Multiply number in registers by 4
0946 DAB207 JP C,07B2H --- Error if exponent overflows
0949 47 LD B,A --- Restore adjusted exponent
094A CD1607 CALL 0716H --- Add original value which gives value * 5
094D 212441 LD HL,4124H --- 4124 = addr of exp of result. By adding 1 to
0950 34 INC (HL) --- it we double it which gives us the original
0951 C0 RET NZ --- value * 10
0952 C3B207 JP 07B2H --- OV error exit
0955 3A2441 LD A,(4124H) --- Test sign of SP number. On exit A=-1 if negative
0958 B7 OR A --- Set status flags for exponent : A=+1 if positive
0959 C8 RET Z --- Exit if exponent is zero
095A 3A2341 LD A,(4123H) --- No, get MSB of SP number
095D FE2F CP 2FH --- 095E : CPL A
095F 17 RLA --- Sign bit to carry
0960 9F SBC A,A --- Gives 0 - sign bit
0961 C0 RET NZ --- Return with A = all 1'S if MSB negative
0962 3C INC A --- Return with A = +1 if MSB positive
0963 C9 RET --- Rtn to caller
0964 0688 LD B,88H --- B = 80 + number of bits to convert ***************
0966 110000 LD DE,0000H --- Zero register used in normalization routine
0969 212441 LD HL,4124H --- Addr of exponent for WRA1
096C 4F LD C,A --- C = MSB of integer
096D 70 LD (HL),B --- Save initial exponent
096E 0600 LD B,00H --- B must be zero before entering see note-->
0970 23 INC HL --- Normalization routine. Bump
0971 3680 LD (HL),80H --- to sign word of WRA1 rtn it positive
0973 17 RLA --- Set CARRY to sign of integer value
0974 C36207 JP 0762H --- Go normalize
0977 CD9409 CALL 0994H --- Convert a negative value *************** cont--> *
097A F0 RET P --- Rtn if positive, else determine data type
097B E7 RST 20H --- Test data type
097C FA5B0C JP M,0C5BH --- Integer, convert to + value, cont-->
097F CAF60A JP Z,0AF6H --- TM error if Z
0982 212341 LD HL,4123H --- We have a SP, or a DP number. Make it positive
0985 7E LD A,(HL) --- by setting the sign bit (bit 8) of the MSB to
0986 EE80 XOR 80H --- zero. Set current value to zero if current
0988 77 LD (HL),A --- value is +, all ones otherwise
0989 C9 RET --- Rtn to caller
098A CD9409 CALL 0994H --- Go test sign of current value ****** see note--> *

110

0921 : (Which should have bit 8 zero since it produced the carry
: we're testing.)

0931 * **

093E * Multiply a SP number by 10 **********************************
: First, add 2 to exponent which is equivalent to multiplying
: by 4 then add the original quantity which yields value * 5.

0964 * ***

: Start of integer to SP conversion.
: Store exponent bits in 4124.
: Set sign flag (4125) for positive
: coefficient. Set C = MSB,
: D = LSB of integer. Set carry to
: Sign of MSB. Call normalization
: routine. If entered at 0969 B must
: be set to 80 + no of bits in integer value

0977 * to its positive equivalent ***---Test sign of current value *

097C : SP if it has overflowed & rtn to caller

098A * A = +1 if positive, all ones if negative. *******************

111

098D 6F LD L,A --- Set up HL as follows: HL = 00 00 if current value
098E 17 RLA --- if positive. HL = FF FF if current val is negative
098F 9F SBC A,A --- gives A=0 if carry is zero or A=FF if
0990 67 LD H,A --- CARRY is set. Move flag to H
0991 C39A0A JP 0A9AH --- Save HL as current value, cont-->
0994 E7 RST 20H --- Determine current data type ************ cont--> *
0995 CAF60A JP Z,0AF6H --- TM error if Z (string)
0998 F25509 JP P,0955H --- Jump if SP or DP. Determine sign & rtn to caller
099B 2A2141 LD HL,(4121H) --- Load integer value in HL
099E 7C LD A,H --- Combine LSB and MSB in
099F B5 OR L --- order to test if zero
09A0 C8 RET Z --- Exit if integer value zero
09A1 7C LD A,H --- A = MSB of integer
09A2 18BB JR 095FH --- Go test sign & rtn to caller cont-->
09A4 EB EX DE,HL --- **
09A5 2A2141 LD HL,(4121H) --- Save HL
09A8 E3 EX (SP),HL --- Value to be moved onto stack
09A9 E5 PUSH HL --- Rtn addr to HL, stack = (4121)
09AA 2A2341 LD HL,(4123H) --- Rtn addr to stack
09AD E3 EX (SP),HL --- 2nd value to be moved onto stack
09AE E5 PUSH HL --- Rtn addr back to stack
09AF EB EX DE,HL --- Restore HL
09B0 C9 RET --- Rtn to caller
09B1 CDC209 CALL 09C2H --- Load a SP no. pointed to by HL into BC/DE. *******
09B4 EB EX DE,HL --- Then move it to WRA1 value area. On exit
09B5 222141 LD (4121H),HL --- save HL (points to byte following exponent). On
09B8 60 LD H,B --- exit, B = exponent, C = MSB, D = next MSB, E =
09B9 69 LD L,C --- LSB, HL = addr of byte following exponent.
09BA 222341 LD (4123H),HL --- Save LSB and next LSB in WRA1
09BD EB EX DE,HL --- Restore HL to original contents
09BE C9 RET --- Return to caller
09BF 212141 LD HL,4121H --- Load a SP number from 4121 - 4124 or addr in HL **
09C2 5E LD E,(HL) --- E = LSB (4121) :see note -->
09C3 23 INC HL --- Bump to next byte
09C4 56 LD D,(HL) --- D = next MSB (4122)
09C5 23 INC HL --- Bump to next byte
09C6 4E LD C,(HL) --- C = MSB (4123)
09C7 23 INC HL --- Bump to next byte
09C8 46 LD B,(HL) --- B = exponent (4124)
09C9 23 INC HL --- Bump to byte following exponent
09CA C9 RET --- Rtn to caller
09CB 112141 LD DE,4121H --- Source address of a SP number ********** cont--> *
09CE 0604 LD B,04H --- Number of bytes to remove
09D0 1805 JR 09D7H --- Move to address specified in HL and rtn to caller
09D2 EB EX DE,HL --- Move routine *********************** see note--> *
09D3 3AAF40 LD A,(40AFH) --- Get type specification (which is also the length
09D6 47 LD B,A --- Length of field to move
09D7 1A LD A,(DE) --- Load a byte from source field
09D8 77 LD (HL),A --- Store it in destination field see note-->
09D9 13 INC DE --- Bump source addr
09DA 23 INC HL --- Bump destination addr
09DB 05 DEC B --- Count 1 byte moved
09DC 20F9 JR NZ,09D7H --- Jmp if more bytes to move
09DE C9 RET --- else rtn to caller
09DF 212341 LD HL,4123H --- Turn on most significant bit of a SP number ******
09E2 7E LD A,(HL) --- Get MSB
09E3 07 RLCA --- Bit 7 to CARRY
09E4 37 SCF --- Turn on bit 7 and reposition number, also original
09E5 1F RRA --- sign bit to CARRY.
09E6 77 LD (HL),A --- Restore number with MSB on

112

0991 : rtn type to integer & return to caller.
0994 * Test sign of current numeric value: on entry A = +1

: if positive or all ones if negative.

09A2 : on rtn A = all 1'S (negative), +1 (positive)
09A4 * Store 4121 - 4124 (WRA1) on stack ***************************

09B1 * **

09BF * **
* 09BF: This entry point loads a SP number
* from WRA1 into BC/DE
* 09C2: This entry point loads a SP number
* pointed to by HL into BC/DE.

* On entry HL points to the LSB of a SP value
* On exit HL points to the byte following the exponent

09CB * Move a SP no. from (HL) to 4121 - 4124 **********************

09D2 * Entry pt. when HL = source addr & DE = dest. addr. **********

: Move number of bytes in type/
: length specification from
: location given in DE to address
: specified in HL.

09DF * **

113

09E7 3F CCF --- Complement bit zero and position it into bit 7
09E8 1F RRA --- (sign & MS bit) of MSB
09E9 23 INC HL --- HL = 4125 = sign of result -determined below
09EA 23 INC HL --- Gives HL - 4125
09EB 77 LD (HL),A --- Save complement of original sign in 4125
09EC 79 LD A,C --- Turn on most significant bit of most significant
09ED 07 RLCA --- byte for the SP value in BC/DE
09EE 37 SCF --- then force CARRY so we can
09EF 1F RRA --- restore byte with bit 7 = 1, original sign bit to
09F0 4F LD C,A --- Restore C = MSB :CARRY
09F1 1F RRA --- Original sign bit to bit 7 set sign flag as
09F2 AE XOR (HL) --- sign of both #'s equal, then
09F3 C9 RET --- 4125 = 80, else 00.
09F4 212741 LD HL,4127H --- Destination addr for numeric value of variable ***
09F7 11D209 LD DE,09D2H --- Return addr
09FA 1806 JR 0A02H --- Move value in WRA1 to WRA2
09FC 212741 LD HL,4127H --- Addr of WRA2
09FF 11D309 LD DE,09D3H --- Move value in WRA1 to WRA2
0A02 D5 PUSH DE --- Force rtn addr to 9D3 see note-->
0A03 112141 LD DE,4121H --- Addr of current variable in WRA1
0A06 E7 RST 20H --- Determine data type of variable
0A07 D8 RET C --- Exit to move routine if INT, STR, or SP
0A08 111D41 LD DE,411DH --- Addr of double precision variable
0A0B C9 RET --- Exit to move routine
0A0C 78 LD A,B --- Compare a SP number in BC/DE with ****** cont--> *
0A0D B7 OR A --- Test exponent of register value
0A0E CA5509 JP Z,0955H --- Jump if exponent (and rest of number) are zero.
0A11 215E09 LD HL,095EH --- Rtn addr when exiting from this routine
0A14 E5 PUSH HL --- To stack
0A15 CD5509 CALL 0955H --- Test sign of MSB of SP number. A = MSB of SP
0A18 79 LD A,C --- number in registers.
0A19 C8 RET Z --- Exit if (4121 - 4124) does not hold a SP number
0A1A 212341 LD HL,4123H --- Addr of MSB of WRA1 value
0A1D AE XOR (HL) --- Compare MSB of (4121) to MSB of value in register
0A1E 79 LD A,C --- Reload MSB of register value
0A1F F8 RET M --- Exit if signs are different
0A20 CD260A CALL 0A26H --- Compare SP mo. in BC/DE with that in 4121 - 4124.
0A23 1F RRA --- Get CARRY flag from comparison and combine with
0A24 A9 XOR C --- sign bit of value in registers.
0A25 C9 RET --- Rtn to caller
0A26 23 INC HL --- HL = addr of exponent WRA1 **********************
0A27 78 LD A,B --- A = exponent of register value
0A28 BE CP (HL) --- Compare exponents
0A29 C0 RET NZ --- Exit if different :
0A2A 2B DEC HL --- Gives addr of MSB for WRA1 :
0A2B 79 LD A,C --- A=MSB of register value :
0A2C BE CP (HL) --- Compare MSB : see note-->
0A2D C0 RET NZ --- Exit if not equal :
0A2E 2B DEC HL --- Gives addr of middle for WRA1 :
0A2F 7A LD A,D --- A = middle byte of reg value :
0A30 BE CP (HL) --- Compare next most MSB :
0A31 C0 RET NZ --- Exit if unequal
0A32 2B DEC HL --- Gives addr of LSB for WRA1
0A33 7B LD A,E --- A = LSB of register value
0A34 96 SUB (HL) --- Compare LSB of values. Exit if not equal
0A35 C0 RET NZ --- Exit if not equal
0A36 E1 POP HL --- Numbers are equal
0A37 E1 POP HL --- Clear 095E from stack and
0A38 C9 RET --- Rtn to caller of 0A0C
0A39 7A LD A,D --- Prepare to test signs ** Compare integer values **

114

09F4 * ***

0A02 : (Move 4DAF bytes from 4121 to 4127)

0A0C * One in 4121 - 4124. Signs must be alike. On exit negative
: if signs unlike or quantity in memory > value in registers.

0A26 * ***

0A29 : Compare a SP no. in BC/DE with a SP no. in 4121 - 4124 must
: have same signs. Do not compare exponents. Begin by com-
: paring the exponent of each number, working down to the LSB.
: Exit as soon as a mix-match if found. HL = addr of byte
: that mis-compared. If the numbers are
: Identical exit with HL = 411F, A = 0, FLAGS = 0.
: If unequal C = 0 (memory) = or < register value
: C = 1 (memory) > register value

0A39 * ***

115

0A3A AC XOR H --- Compare sign of D to sign of H see note-->
0A3B 7C LD A,H --- Prepare for subtraction
0A3C FA5F09 JP M,095FH --- Jmp if signs unequal
0A3F BA CP D --- Else, compare MSB's
0A40 C26009 JP NZ,0960H --- Jmp if unequal
0A43 7D LD A,L --- Prepare to compare LSB of integer
0A44 93 SUB E --- Compare LSB's
0A45 C26009 JP NZ,0960H --- Jmp it unequal
0A48 C9 RET --- Rtn - Values are equal. A=00
0A49 212741 LD HL,4127H --- Addr of WRA1 value **** Compare two DP values ****
0A4C CDD309 CALL 09D3H --- Move value pointed to by saved location 4127-412E
0A4F 112E41 LD DE,412EH --- Now get addr of the exponent for the value moved
0A52 1A LD A,(DE) --- Load the exponent
0A53 B7 OR A --- Set status flags according to exponent
0A54 CA5509 JP Z,0955H --- If exponent zero, test sign of MSB & rtn to caller
0A57 215E09 LD HL,095EH --- Push rtn addr of 95E onto stack in case WRA1 and
0A5A E5 PUSH HL --- WRA2 values not equal
0A5B CD5509 CALL 0955H --- Test WRA1 value for zero. Skip if zero at 0A61
0A5E 1B DEC DE --- DE = addr of MSB of moved value
0A5F 1A LD A,(DE) --- Load MSB
0A60 4F LD C,A --- and move it to C
0A61 C8 RET Z --- Exit if MSB of WRA1 value is zero
0A62 212341 LD HL,4123H --- HL = addr of MSB for current value
0A65 AE XOR (HL) --- Compare sign of moved & current values
0A66 79 LD A,C --- Restore MSB of WRA2 value (moved value)
0A67 F8 RET M --- Exit if signs different
0A68 13 INC DE --- DE = current value exponent addr
0A69 23 INC HL --- HL = saved value exponent addr
0A6A 0608 LD B,08H --- Prepare to compare current and saved values
0A6C 1A LD A,(DE) <--: Begin comparing values byte for byte
0A6D 96 SUB (HL) • : by subtracting WRA1 from WRA2
0A6E C2230A JP NZ,0A23H • : Jump if unequal
0A71 1B DEC DE • : Backspace WRA2 1 byte
0A72 2B DEC HL • : Backspace WRA1 1 byte
0A73 05 DEC B • : Count number of bytes compared
0A74 20F6 JR NZ,0A6CH ---> Loop till all bytes compared
0A76 C1 POP BC --- Values are equal, clear rtn addr of 95E from stack
0A77 C9 RET --- and rtn to caller
0A78 CD4F0A CALL 0A4FH --- Compare current to saved value ***** see note--> *
0A7B C25E09 JP NZ,095EH --- Set status flag if unequal
0A7E C9 RET --- Equal. Return with A=00, status = 0
0A7F E7 RST 20H --- Test data type ***************** CINT routine ****
0A80 2A2141 LD HL,(4121H) --- HL = addr of LSB of SP value in WRA1
0A83 F8 RET M --- Already an integer
0A84 CAF60A JP Z,0AF6H --- TM error if Z (string)
0A87 D4B90A CALL NC,0AB9H --- If double precision, call CSGN
0A8A 21B207 LD HL,07B2H --- Address of OV error routine becomes
0A8D E5 PUSH HL --- Rtn addr in case of error
0A8E 3A2441 LD A,(4124H) --- Get exponent of current value in WRA1
0A91 FE90 CP 90H --- and test if > 16 : 16 bits)
0A93 300E JR NC,0AA3H --->: Jump if exponent>16 (integer has more than
0A95 CDFB0A CALL 0AFBH -- : Convert A +SP number to its integer equivalent
0A98 EB EX DE,HL -- : Integer value in DE to HL
0A99 D1 POP DE -- : Clear error rtn or addition operand from stack
0A9A 222141 LD (4121H),HL -- : Return integer value in HL to WRA1
0A9D 3E02 LD A,02H -- : Integer flag
0A9F 32AF40 LD (40AFH),A -- : Set data type to integer
0AA2 C9 RET -- : Rtn to original caller
0AA3 018090 LD BC,9080H <---: BC/DE = -2**16 ********************************
0AA6 110000 LD DE,0000H --- in SP format

116

0A3A : Compare integer values in DE/HL. If signs are unlike, rtn
: with status of -1. If DEAL then rtn A=-1, if DEAL then
: A=+1, if DE=HL then A=00.

0A49 * ***

0A78 * Compare two DP values ***************************************

0A7F * ***

0AA3 * ***

117

0AA9 CD0C0A CALL 0A0CH --- Compare current value to -2**16
0AAC C0 RET NZ --- If values not identical exit
0AAD 61 LD H,C --- If so, set current value to integer,-2**16
0AAE 6A LD L,D --- and rtn to caller
0AAF 18E8 JR 0A99H --- Rtn type to integer, value to 8000, & return
0AB1 E7 RST 20H --- Test data type ************* CSNG routine ********
0AB2 E0 RET PO --- Already single
0AB3 FACC0A JP M,0ACCH --- Jump if integer
0AB6 CAF60A JP Z,0AF6H --- TM error if Z (string)
0AB9 CDBF09 CALL 09BFH --- Load a first half of DP value from WRA1 into BC/DE
0ABC CDEF0A CALL 0AEFH --- Flag current value as single precision
0ABF 78 LD A,B --- Get exponent for DP value
0AC0 B7 OR A --- Set status flags
0AC1 C8 RET Z --- Test exponent, exit if zero (DP value is zero)
0AC2 CDDF09 CALL 09DFH --- Turn on MSB of value in WRA1 & register value
0AC5 212041 LD HL,4120H --- HL = middle addr of DP value in WRA1
0AC8 46 LD B,(HL) --- Load middle part of DP. Value becomes LSB
0AC9 C39607 JP 0796H --- Convert reg part of DP no to SP value & rtn
0ACC 2A2141 LD HL,(4121H) --- Convert integer to single precision ************
0ACF CDEF0A CALL 0AEFH --- Flag WRA1 as SP
0AD2 7C LD A,H --- A = MSB of integer
0AD3 55 LD D,L --- D = LSB of integer
0AD4 1E00 LD E,00H --- E = Rest of value (equals zero)
0AD6 0690 LD B,90H --- B = initial max exponent
0AD8 C36909 JP 0969H --- Go normalize then rtn to caller
0ADB E7 RST 20H --- Test data type *************** See note --> ****
0ADC D0 RET NC --- Already double
0ADD CAF60A JP Z,0AF6H --- Jump if sting
0AE0 FCCC0A CALL M,0ACCH --- Call if integer (convert integer to SP)
0AE3 210000 LD HL,0000H --- Zero last 4 bytes of WRA1
0AE6 221D41 LD (411DH),HL --- These bytes hold the
0AE9 221F41 LD (411FH),HL --- tail end of a DP value
0AEC 3E08 LD A,08H --- Double precision flag
0AEE 013E04 LD BC,043EH --- 0AEF LD A,04 Single precision flag
0AF1 C39F0A JP 0A9FH --- Store A in type flag & return
0AF4 E7 RST 20H --- Test data type*********************************
0AF5 C8 RET Z --- Return with no error message if a string
0AF6 1E18 LD E,18H --- TM error code if not a string
0AF8 C3A219 JP 19A2H --- Output TM error message
0AFB 47 LD B,A --- Convert a positive SP number to integer **********
0AFC 4F LD C,A --- Move exponent from A to BC,
0AFD 57 LD D,A --- D
0AFE 5F LD E,A --- and E
0AFF B7 OR A --- Test value of exponent
0B00 C8 RET Z --- Exit if value of number is zero
0B01 E5 PUSH HL --- Save error rtn addr
0B02 CDBF09 CALL 09BFH --- Load current SP value into BC/DE
0B05 CDDF09 CALL 09DFH --- Prepare current value and register value for
0B08 AE XOR (HL) --- arithmetic operation see note-->
0B09 67 LD H,A --- H = sign of value. Bit 8 = 0 if +, 1 if -
0B0A FC1F0B CALL M,0B1FH --- Jmp if value negative
0B0D 3E98 LD A,98H --- A = max. exponent allowed
0B0F 90 SUB B --- Exponent - bias = no. of bits to right cont-->
0B10 CDD707 CALL 07D7H --- Get integer equivalent of no. in CDE cont-->
0B13 7C LD A,H --- A = original sign. Bit 8 = 0 if +, 1 if -
0B14 17 RLA --- Shift sign into carry
0B15 DCA807 CALL C,07A8H --- If neg. convert trailing ones to zeroes
0B18 0600 LD B,00H --- Zero exponent
0B1A DCC307 CALL C,07C3H --- If number was neg. make it a neg. integer
0B1D E1 POP HL --- Restore caller's HL

118

0AB1 * ***

0ACC * ***

0ADB * Convert integer or SP to DP ******************************

0AF4 * ***

0AFB * ***

0B08 : (Turn on most sig. bits and test for same sign).

0B0F : shift to get integer
0B10 : right justified

119

0B1E C9 RET --- Rtn to caller
0B1F 1B DEC DE --- Decrement middle and LSB of SP value *** cont--> *
0B20 7A LD A,D --- then combine new
0B21 A3 AND E --- middle & LSB. If they were zero the cont-->
0B22 3C INC A --- Test for FFFF (middle & LSB were 0)
0B23 C0 RET NZ --- Exit if they were not zero
0B24 0B DEC BC --- Else decrement MSB
0B25 C9 RET --- Then exit
0B26 E7 RST 20H --- Determine data type ********* Fix routine ********
0B27 F8 RET M --- Finished if an integer
0B28 CD5509 CALL 0955H --- Test sign of current value (floating point)
0B2B F2370B JP P,0B37H --- Jmp if it's positive
0B2E CD8209 CALL 0982H --- Clear sign bit of current value (make it +)
0B31 CD370B CALL 0B37H --- Convert a SP or DP value to integer. Do not round
0B34 C37B09 JP 097BH --- Convert integer part of no. back to cont-->
0B37 E7 RST 20H --- Convert SP or DP to integer - Determine data type*
0B38 F8 RET M --- Done, already an integer
0B39 301E JR NC,0B59H --- Jump if double precision
0B3B 28B9 JR Z,0AF6H --- TM error if Z (string)
0B3D CD8E0A CALL 0A8EH --- Convert from SP to integer & return to caller
0B40 212441 LD HL,4124H --- HL = addr of current SP value ********************
0B43 7E LD A,(HL) --- A = exponent of current value
0B44 FE98 CP 98H --- Test if more than 16 bits in integer position
0B46 3A2141 LD A,(4121H) --- A = least sig byte of current value
0B49 D0 RET NC --- Exit if more than 16 bits in integer position
0B4A 7E LD A,(HL) --- A = exponent see note-->
0B4B CDFB0A CALL 0AFBH --- Convert SP to integer. This gives integer
0B4E 3698 LD (HL),98H --- equivalent of number.
0B50 7B LD A,E --- Now, convert number back to SP
0B51 F5 PUSH AF --- Move 8 bits of integer value
0B52 79 LD A,C --- From E to A then save it on stk.
0B53 17 RLA --- Then position sign from bit 8 of C in CARRY then
0B54 CD6207 CALL 0762H --- Normalize number & adjust exponent
0B57 F1 POP AF --- Restore 8 bits of integer value
0B58 C9 RET --- Rtn to caller.
0B59 212441 LD HL,4124H --- Double precision to integer **********************
0B5C 7E LD A,(HL) --- Get exponent
0B5D FE90 CP 90H --- and compare to bias
0B5F DA7F0A JP C,0A7FH --- Jump if number will have less than 16 cont-->
0B62 2014 JR NZ,0B78H --- Jump if number will have more than 16 cont-->
0B64 4F LD C,A --- C = exponent = 90 Number will have 16 bits of int
0B65 2B DEC HL --- Backspace to MSB of WRA1
0B66 7E LD A,(HL) --- A = most sig byte
0B67 EE80 XOR 80H --- Complement sign bit of MSB
0B69 0606 LD B,06H --- Test for a minus zero. If sum of A plus all
0B6B 2B DEC HL --- successive bytes is zero, then value is zero.
0B6C B6 OR (HL) --- Backspace to next byte of DP value
0B6D 05 DEC B --- Examined all bytes
0B6E 20FB JR NZ,0B6BH --- No, loop
0B70 B7 OR A --- Set status flags for OR of all bytes in DP value
0B71 210080 LD HL,8000H --- HL = integer - 0
0B74 CA9A0A JP Z,0A9AH --- Rtn value to - 0, type to integer and return to
0B77 79 LD A,C --- DP exponent to A-reg caller
0B78 FEB8 CP 0B8H --- Compare to 56(base 10)
0B7A D0 RET NC --- Error - more than 56 bits in DP no.
0B7B F5 PUSH AF --- Save exponent
0B7C CDBF09 CALL 09BFH --- Load BC/DE with first part of a DP number
0B7F CDDF09 CALL 09DFH --- Turn on most sig bit. Determine sign of result
0B82 AE XOR (HL) --- Test sign of value. If + then status = +, else
0B83 2B DEC HL --- HL=4123=MSB current value addr :negative

120

0BlF * Round down a SP number **************************************

0B21 : result will be FFFF.

0B26 * ***

0B34 : SP or DP then return
0B37 * ***

0B40 * ***

: Isolate the integer portion of a SP number.
: Leave the integer in the A-register. Convert
: the integer to a SP number and leave it in WRA1
: returns with NO CARRY if called with a DP value in WRA1.

0B59 * ***

0B5F : bits of precision. Use SP to integer conversion routine.
0B62 : bits of precision

121

0B84 36B8 LD (HL),0B8H --- Max exponent to exponent area
0B86 F5 PUSH AF --- Save sign of value
0B87 FCA00B CALL M,0BA0H --- If negative, convert trailing ones to zeroes
0B8A 212341 LD HL,4123H --- HL = addr of MSB of DP value
0B8D 3EB8 LD A,0B8H --- A = exponent (max) for DP number
0B8F 90 SUB B --- Subtract current exponent gives no. cont-->
0B90 CD690D CALL 0D69H --- Unpack and right justify value
0B93 F1 POP AF --- Restore sign
0B94 FC200D CALL M,0D20H --- If negative, convert trailing zeroes to ones
0B97 AF XOR A --- Clear A
0B98 321C41 LD (411CH),A --- Ret sign of mantissa
0B9B F1 POP AF --- Restore original exponent
0B9C D0 RET NC --- Error if more than 56 bits in mantissa
0B9D C3D80C JP 0CD8H --- Normalize result and exit
0BA0 211D41 LD HL,411DH --- HL=addr of LSB of DP value ********* see note--> *
0BA3 7E LD A,(HL) <---: Fetch a byte from list
0BA4 35 DEC (HL) • : Decrement byte in list
0BA5 B7 OR A • : Test byte as originally fetched
0BA6 23 INC HL • : Bump to next item in list
0BA7 28FA JR Z,0BA3H --->: Loop till non-zero byte found
0BA9 C9 RET --- Rtn to caller
0BAA E5 PUSH HL --- Save callers HL********************* see note-> **
0BAB 210000 LD HL,0000H --- Zero accumulator register
0BAE 78 LD A,B --- Test quantity in BC, if
0BAF B1 OR C --- zero, move zeros to DE & exit
0BB0 2812 JR Z,0BC4H ------>: Jump if BC zero
0BB2 3E10 LD A,10H • : A = 16 = no. of times to shift left
0BB4 29 ADD HL,HL <------:--: Shift result left 1 position
0BB5 DA3D27 JP C,273DH • : : BS error if C
0BB8 EB EX DE,HL • : : Prepare to shift multiplicand left
0BB9 29 ADD HL,HL • : : 1 place. Shift it and
0BBA EB EX DE,HL • : : move it back to DE
0BBB 3004 JR NC,0BC1H --->: : : If no carry, has not found a l, don't add
0BBD 09 ADD HL,BC • : : : Else add multiplier to result thus far
0BBE DA3D27 JP C,273DH • : : : BS error if C
0BC1 3D DEC A <---: : : Have we shifted 16 times
0BC2 20F0 JR NZ,0BB4H -------:->: No, loop
0BC4 EB EX DE,HL <------: Move answer to DE
0BC5 E1 POP HL --- Restore caller's HL
0BC6 C9 RET --- Return to caller
0BC7 7C LD A,H --- Test sign of value in HL *********** see note--> *
0BC8 17 RLA --- And save in B. B = 0
0BC9 9F SBC A,A --- If HL +, all one's if HL neg.
0BCA 47 LD B,A --- Move sign flag to B
0BCB CD510C CALL 0C51H --- Convert HL to it's one's compliment cont-->
0BCE 79 LD A,C --- Zero to A. Setup A for sign of difference. If HL
0BCF 98 SBC A,B --- was +, then A=+0, if was -, then A=-1
0BD0 1803 JR 0BD5H --- Use addition routine. If result cont-->
0BD2 7C LD A,H --- Set B = sign of HL ***************** see note--> *
0BD3 17 RLA --- Sign bit to CARRY
0BD4 9F SBC A,A --- B = 0 if HL +, else -1
0BD5 47 LD B,A --- Repositioned sign bit to B
0BD6 E5 PUSH HL --- Save HL in case we must convert it to SP
0BD7 7A LD A,D --- MSB of register value so we can test sign
0BD8 17 RLA --- Set A = sign of DE
0BD9 9F SBC A,A --- A = 0 if HL +, else -1
0BDA 19 ADD HL,DE --- Add the two integers. Add sign of result to sum
0BDB 88 ADC A,B --- of the signs
0BDC 0F RRCA --- Sign of result to bit 7 and
0BDD AC XOR H --- combine with sign of HL

122

0B8F : of places to right shift to get integer

0BA0 * Convert trailing ones to a neg. DP value to zeroes **********

0BAA * Binary multiplication of two 16 bit quantities in BC and DE**
: Result is left in DE. Uses shift and add method. Called
: from BASIC interpreter when computing addr of a subscripted
: variable.

0BC7 * Binary subtraction for two 16 bit values in HL and DE.*******

0BCB : so we use addition routine

0BD0 : underflows convert to SP.
0BD2 * Binary addition for two integers in HL & DE. Result left in**

: HL. If result overflows convert both quantities to SP and
: add. Determine overflow as follows:
: C = carry after addition C = 0 -- No overflow
: C = 1 --- then if
: :
: ---------!----------
: : :
: A = 0, B = 0 A <> B
: then overflow negative no.

123

0BDE F2990A JP P,0A99H --- No overflow. Flag result as integer, cont-->:
0BE1 C5 PUSH BC --- Save sign flag on stk
0BE2 EB EX DE,HL --- Original DE to HL for conversion purposes.
0BE3 CDCF0A CALL 0ACFH --- Convert original value of DE to SP. Save it in
0BE6 F1 POP AF --- 4121 - 4124. Clear stk.
0BE7 E1 POP HL --- Restore original quantity in HL. It was wiped by
0BE8 CDA409 CALL 09A4H --- Move converted value of DE to stack : add.
0BEB EB EX DE,HL --- Restore HL
0BEC CD6B0C CALL 0C6BH --- Convert HL to single precision
0BEF C38F0F JP 0F8FH --- Add single precision equivalent of HL & DE
0BF2 7C LD A,H --- Test value of HL ******************* see note--> *
0BF3 B5 OR L --- If
0BF4 CA9A0A JP Z,0A9AH --- Zero, exit with result (0) in HL
0BF7 E5 PUSH HL --- Save original value in case we need to
0BF8 D5 PUSH DE --- convert them to SP.
0BF9 CD450C CALL 0C45H --- Set result to integer type. Convert any neg.
0BFC C5 PUSH BC --- value to +. BC = sign of result (pushed one).
0BFD 44 LD B,H --- B = MSB of value 2
0BFE 4D LD C,L --- BC = value 2
0BFF 210000 LD HL,0000H --- HL = accumulator
0C02 3E10 LD A,10H --- No. of times to shift left.
0C04 29 ADD HL,HL <-------: Shift answer and test for
0C05 381F JR C,0C26H • : overflow. CARRY if so.
0C07 EB EX DE,HL • : No overflow, shift DE left
0C08 29 ADD HL,HL • : one bit and test for a binary
0C09 EB EX DE,HL • : one (CARRY).
0C0A 3004 JR NC,0C10H ---->: : No CARRY, no binary one
0C0C 09 ADD HL,BC • : : Add original value in HL to
0C0D DA260C JP C,0C26H --------:->: Accumulator for each binary one
0C10 3D DEC A <----: : : in DE.
0C11 20F1 JR NZ,0C04H ------->: : Have we shifted DE 16 places, no loop
0C13 C1 POP BC --- : Yes, get sign of result
0C14 D1 POP DE --- : Original value in DE
0C15 7C LD A,H --- : Now test true sign of result
0C16 B7 OR A --- : Set status flags according to result
0C17 FA1F0C JP M,0C1FH --- : Jump if answer is negative. see note-->
0C1A D1 POP DE --- : Clear stack,
0C1B 78 LD A,B --- : get sign of result to A
0C1C C34D0C JP 0C4DH --- : Convert HL to proper sign, cont-->
0C1F EE80 XOR 80H --- : Clear sign bit & test rest of value for 0
0C21 B5 OR L --- : If zero, we have a negative number, else
0C22 2813 JR Z,0C37H --- : Convert it to single precision etc.
0C24 EB EX DE,HL --- : :C26 POP BC Clear sign of result note-->
0C25 01C1E1 LD BC,0E1C1H <--------- : :C27 POP HL Restore original HL value
0C28 CDCF0A CALL 0ACFH --- Convert original HL to single precision
0C2B E1 POP HL --- HL = original DE
0C2C CDA409 CALL 09A4H --- Move converted HL to stack
0C2F CDCF0A CALL 0ACFH --- Convert DE (now in HL) to single precision
0C32 C1 POP BC --- Load converted HL value from stack
0C33 D1 POP DE --- into BC/DE
0C34 C34708 JP 0847H --- Do single precision multiplication
0C37 78 LD A,B --- Get sign flag of result **************************
0C38 B7 OR A --- Rtn status flags to sign of result
0C39 C1 POP BC --- Clear stack in case we exit
0C3A FA9A0A JP M,0A9AH --- If sign was suppose to be negative, exit
0C3D D5 PUSH DE --- Save original DE
0C3E CDCF0A CALL 0ACFH --- Convert result to single precision
0C41 D1 POP DE --- Restore original DE
0C42 C38209 JP 0982H --- Rtn sign and return to caller
0C45 7C LD A,H --- Get sign of MSB from 2nd operand **** see note-->*

124

: store in 4121 & return.

0BF2 * Integer multiplication. DE = first value, HL = 2nd value.***
: Result is left in HL. If the signs of both operands are
: equal, then the result has the same sign. If either sign is
: different, the result is set negative. Any negative values
: are converted to their positive equivalents before the
: multiplication is started. Method used is shift and add.
: For each 1 found in DE, the original contents of HL are
: added to an accumulator register (HL in this case) and
: shifted left. Process is repeated 16 times (must test all
: 16 bits in DE). If overflow occurs, convert both values to
: SP and use SP multiplication routine.

0C17 : (May have overflowed.)

0C1C : save result and return to caller.
0C1F * ***

0C24 : Number has overflowed. Convert to SP to re-multiply.

0C37 * ***

: : If HL is negative convert it to its one's complement.
0C45 * *** : If DE is negative convert it also. ********************

125

0C46 AA XOR D --- And combine with sign from 1st operand.
0C47 47 LD B,A --- B = + if signs are equal (+,+) or (-,-), cont-->
0C48 CD4C0C CALL 0C4CH --- Test sign of HL operand. If neg. convert to pos.
0C4B EB EX DE,HL --- Switch HL/DE so we can test sign of DE cont-->
0C4C 7C LD A,H --- Get sign byte of value in DE.
0C4D B7 OR A --- Set status flags according to sign of value in DE
0C4E F29A0A JP P,0A9AH --- Flag as integer, result to 4121. Rtn to caller
0C51 AF XOR A --- Clear A, CARRY
0C52 4F LD C,A --- Zero C : Convert a negative :
0C53 95 SUB L --- Convert LSB : integer to its one's :
0C54 6F LD L,A --- And restore : complement positive :
0C55 79 LD A,C --- Zero to A : equivalent :
0C56 9C SBC A,H --- Convert MSB
0C57 67 LD H,A --- And restore
0C58 C39A0A JP 0A9AH --- Set data type to integer(02), cont-->
0C5B 2A2141 LD HL,(4121H) --- Get binary value of integer **********************
0C5E CD510C CALL 0C51H --- Convert to a positive value
0C61 7C LD A,H --- Make sure value is LE 2**15
0C62 EE80 XOR 80H --- If bit 15 is not zero, and the remainder
0C64 B5 OR L --- of the word is zero then value > 2**15
0C65 C0 RET NZ --- Rtn if integer = or < 32768
0C66 EB EX DE,HL --- Value is > 2**15. Move it to DE
0C67 CDEF0A CALL 0AEFH --- Set SNG precision flag
0C6A AF XOR A --- Set exponent to zero
0C6B 0698 LD B,98H --- Maximum exponent for SP values
0C6D C36909 JP 0969H --- Convert value to SP and rtn to caller
0C70 212D41 LD HL,412DH --- Double precision subtraction routine. ** cont--> *
0C73 7E LD A,(HL) --- Load MSB of saved value
0C74 EE80 XOR 80H --- Invert sign
0C76 77 LD (HL),A --- And restore
0C77 212E41 LD HL,412EH --- HL=addr of exponent in WRA2 ************ cont--> *
0C7A 7E LD A,(HL) --- Load exponent from WRA2
0C7B B7 OR A --- Set status flags for exponent
0C7C C8 RET Z --- Exit if WRA2 value zero
0C7D 47 LD B,A --- B = Exponent WRA2 value
0C7E 2B DEC HL --- Backspace to MSB of WRA2
0C7F 4E LD C,(HL) --- C = MSB WRA2 number
0C80 112441 LD DE,4124H --- DE = addr exponent of WRA1 value
0C83 1A LD A,(DE) --- Load exponent of value in WRA1
0C84 B7 OR A --- Set status flags
0C85 CAF409 JP Z,09F4H --- Jump if WRA1 value is zero
0C88 90 SUB B --- Else, compare exponents : WRA1 - WRA2
0C89 3016 JR NC,0CA1H --- Jump if WRA1 exponent > WRA2 exponent cont-->
0C8B 2F CPL --- Make diff. in exponent positive
0C8C 3C INC A --- Current number is larger than saved number
0C8D F5 PUSH AF --- Save difference in exponents
0C8E 0E08 LD C,08H --- Now, swap the two numbers so that WRA1 = WRA2
0C90 23 INC HL --- And visa-versa
0C91 E5 PUSH HL --- HL = addr of exponent WRA2
0C92 1A LD A,(DE) --- Swap WRA1 and WRA2 double precision numbers
0C93 46 LD B,(HL) --- Load a byte from WRA1
0C94 77 LD (HL),A --- Load a byte from WRA2 : Force larger
0C95 78 LD A,B --- WRA1 byte to WRA2 : number into
0C96 12 LD (DE),A --- WRA2 byte to WRA1 : WRA1
0C97 1B DEC DE --- Decrement WRA1 addr.
0C98 2B DEC HL --- Decrement WRA2 addr.
0C99 0D DEC C --- Count 1 byte moved
0C9A 20F6 JR NZ,0C92H --- Loop till 8 bytes of SP numbers moved
0C9C E1 POP HL --- Restore addr. of WRA2 to HL
0C9D 46 LD B,(HL) --- B = exponent of new WRA2 number

126

0C47 : negative if unlike (+,-)

0C4B : Convert to + if its negative.

0C58 : Save value in 4121/4122 & return
0C5B * ***

0C70 * Addr of saved DP value **************************************

0C77 * Double precision addition routine. Add current value to
: saved value.

0C89 : There are less bits in integer portion so it is smaller

127

0C9E 2B DEC HL --- HL = addr. of MSB of WRA2 value
0C9F 4E LD C,(HL) --- C = MSB new WRA2 number
0CA0 F1 POP AF --- A = difference in exponents
0CA1 FE39 CP 39H --- Is diff in exponent more than 56 bits
0CA3 D0 RET NC --- Exit if difference in exponent more than 56 bits
0CA4 F5 PUSH AF --- Save diff. in exponents
0CA5 CDDF09 CALL 09DFH --- Turn on most significant bit in MSB of WRA1
0CA8 23 INC HL --- HL = addr. of bit bucket zeroed
0CA9 3600 LD (HL),00H --- during normalization. Zero it
0CAB 47 LD B,A --- Save sign flag for WRA2
0CAC F1 POP AF --- Restore exponent diff.
0CAD 212D41 LD HL,412DH --- HI. = addr of MSB for saved value
0CB0 CD690D CALL 0D69H --- Scale (right justify) saved value so its exponent
0CB3 3A2641 LD A,(4126H) --- = current value then the two numbers can be added
0CB6 321C41 LD (411CH),A --- Get last 8 bits shifted out of WRA2 value
0CB9 78 LD A,B --- Get sign flag for WRA2 value
0CBA B7 OR A --- Set status flags according to WRA2 sign
0CBB F2CF0C JP P,0CCFH --- Signs are different, must subtract
0CBE CD330D CALL 0D33H --- Add DP number in (4127-412D) to (411D-4123)
0CC1 D20E0D JP NC,0D0EH --- If no CARRY, adjust sign of result and exit
0CC4 EB EX DE,HL --- There was CARRY, increment exponent of current
0CC5 34 INC (HL) --- value, error if overflow
0CC6 CAB207 JP Z,07B2H --- Jump to OV error message routine
0CC9 CD900D CALL 0D90H --- Then right shift coefficient, position
0CCC C30E0D JP 0D0EH --- Adjust sign of result and return
0CCF CD450D CALL 0D45H --- Subtract saved value from current ****** cont--> *
0CD2 212541 LD HL,4125H --- HL = Sign flag for result
0CD5 DC570D CALL C,0D57H --- If CARRY, then get one's complement of the diff.
0CD8 AF XOR A --- Initial counter value
0CD9 47 LD B,A <-----: Zero B for normalization loop below
0CDA 3A2341 LD A,(4123H) • : Fetch MSB and
0CDD B7 OR A • : Test for zero
0CDE 201E JR NZ,0CFEH ------->: If non-zero, go shift left until cont-->
0CE0 211C41 LD HL,411CH • : : HL = addr of LSB-1 for DP value in WRA1
0CE3 0E08 LD C,08H • : : C = no. of bytes to shift
0CE5 56 LD D,(HL) <---: : : Get next byte to be moved
0CE6 77 LD (HL),A • : : : Save current byte
0CE7 7A LD A,D • : : : Save byte to be moved to succeeding addr
0CE8 23 INC HL • : : : Bump to next byte in WRA1
0CE9 0D DEC C • : : : Have we shifted entire DP no. left one byte
0CEA 20F9 JR NZ,0CE5H --->: : : No, loop
0CEC 78 LD A,B • : : : Yes, in case no. is zero, don't loop forever
0CED D608 SUB 08H • : : : Have we shifted the LSB all the way to the
0CEF FEC0 CP 0C0H • : : : exponent (8 bytes)
0CF1 20E6 JR NZ,0CD9H ----->: : No, continue looking for a non-zero MSB
0CF3 C37807 JP 0778H --- : Yes, zero exponent & return
0CF6 05 DEC B <---: : Maintain count of bytes & bits shifted left *
0CF7 211C41 LD HL,411CH • : : Addr of LSB of 8 byte no. to shift left 1 bit
0CFA CD970D CALL 0D97H • : : Shift number left one place
0CFD B7 OR A • : : Test bit 7 of MSB
0CFE F2F60C JP P,0CF6H <-->:<--: Continue shifting until bit 7 = 1
0D01 78 LD A,B --- Test count of places shifted left
0D02 B7 OR A --- Set status flags for count
0D03 2809 JR Z,0D0EH --- Jmp if value already normalized
0D05 212441 LD HL,4124H --- HL=address of exponent
0D08 86 ADD A,(HL) --- Add count of bits shifted left to bias
0D09 77 LD (HL),A --- Save new exponent
0D0A D27807 JP NC,0778H --- If no overflow, set exponent to zero
0D0D C8 RET Z --- and rtn to caller
0D0E 3A1C41 LD A,(411CH) --- Get MSB of current value

128

0CCF * Difference replaces current *********************************
: Normalize the difference. Test the MSB, if zero shift entire
: number left one byte. When MSB is non-zero shift number
: left one bit at a time until a one is shifted into bit 7
: of the MSB.

0CDE : A 1 appears in bit 7. Else shift entire number left one byte
: starting at the LSB shifting towards the exponent.

0CF6 * ***

129

0D11 B7 OR A --- Set status flags
0D12 FC200D CALL M,0D20H --- If value is negative, reset trailing zeroes to
0D15 212541 LD HL,4125H --- Get sign of result :ones
0D18 7E LD A,(HL) --- into A register
0D19 E680 AND 80H --- Isolate sign of result flag
0D1B 2B DEC HL --- Backspace to sign of mantissa
0D1C 2B DEC HL --- gives HL-2
0D1D AE XOR (HL) --- Set sign of result to mantissa of result
0D1E 77 LD (HL),A --- Restore MSB with correct sign
0D1F C9 RET --- Ret to caller
0D20 211D41 LD HL,411DH --- HL = Addr of LSB for current DP value ************
0D23 0607 LD B,07H --- Current DP value
0D25 34 INC (HL) --- Bump LSB
0D26 C0 RET NZ --- Exit if no overflow :
0D27 23 INC HL --- Else add CARRY to :
0D28 05 DEC B --- Next byte until no : see note-->
0D29 20FA JR NZ,0D25H --- Overflow :
0D2B 34 INC (HL) --- Bump exponent :
0D2C CAB207 JP Z,07B2H --- OV error code
0D2F 2B DEC HL --- Number has become negative
0D30 3680 LD (HL),80H --- Reset MSB=80, rest of byte=00
0D32 C9 RET --- Rtn
0D33 212741 LD HL,4127H --- Addr of augment **********************************
0D36 111D41 LD DE,411DH --- Addr of addend
0D39 0E07 LD C,07H --- No. of bytes to add
0D3B AF XOR A --- Clear CARRY flag :
0D3C 1A LD A,(DE) <----: Do addition :
0D3D 8E ADC A,(HL) • : Begin with LSB and work : see note-->
0D3E 12 LD (DE),A • : Towards MS B. Move :
0D3F 13 INC DE • : result to WRA1 (4121-4124). Number
0D40 23 INC HL • : must be unpacked before starting addition
0D41 0D DEC C • : Count 1 byte added
0D42 20F8 JR NZ,0D3CH ---->: Loop till all bytes added
0D44 C9 RET --- Rtn to caller
0D45 212741 LD HL,4127H --- Start of WRA2 value ******************************
0D48 111D41 LD DE,411DH --- Start of WRAl value
0D4B 0E07 LD C,07H --- No. of bytes to subtract
0D4D AF XOR A --- Clear CARRY flag
0D4E 1A LD A,(DE) <----: Get a current LSB and :
0D4F 9E SBC A,(HL) • : Subtract a saved LSB :
0D50 12 LD (DE),A • : From it. Result replaces : see note-->
0D51 13 INC DE • : Current value. Bump fetch :
0D52 23 INC HL • : addresses for WRA1 & WRA2 :
0D53 0D DEC C • : Count bytes subtracted
0D54 20F8 JR NZ,0D4EH ---->: Loop till all bytes subtracted
0D56 C9 RET --- Then rtn
0D57 7E LD A,(HL) --- Set sign flag to E *******************************
0D58 2F CPL --- Indicating one's complement
0D59 77 LD (HL),A --- Restore sign flag
0D5A 211C41 LD HL,411CH --- HL = addr of LSB of current DP
0D5D 0608 LD B,08H --- No. of bytes to complement
0D5F AF XOR A --- Zero A & clear CARRY flag :
0D60 4F LD C,A --- Save zero so it can be reloaded :
0D61 79 LD A,C <----: Reload zero, leave CARRY untouched : see note-->
0D62 9E SBC A,(HL) • : Complement a byte :
0D63 77 LD (HL),A • : And restore it :
0D64 23 INC HL • : Bump to next byte of number
0D65 05 DEC B • : Done 8 bytes
0D66 20F9 JR NZ,0D61H ---->: No, loop
0D68 C9 RET --- Yes, exit

130

0D20 * ***
: Add 1 to a DP number in WRA1
: Begin by adding 1 to the LSB. If overflow (result = 0), add
: the CARRY to next byte, etc. If there is overflow out of
: the exponent then the number has overflowed.

0D33 * ***
: Add two double precision numbers.
: Add coefficients only, do not add exponents. Address of one
: number in DE, and other in HL. Sum replaces the number
: pointed to by HL
:

0D45 * ***
: Subtract two double precision numbers
: Contents of (411D - 4123) are subtracted from (4127 - 412D).
: Result replaces (411D - 4123).

0D57 * ***
: This routine converts a positive DP value in WRA1
: to its one's complement equivalent

131

0D69 71 LD (HL),C --- Save MSB see note-->
0D6A E5 PUSH HL --- Save starting addr of value starting
0D6B D608 SUB 08H --- with MSB. Is shift count => 8
0D6D 380E JR C,0D7DH --- No, go to bit shift routine
0D6F E1 POP HL --- Restore HL to start of array
0D70 E5 PUSH HL --- Save start of array
0D71 110008 LD DE,0800H --- D = count of bytes to move (shift right 1 byte)
0D74 4E LD C,(HL) <----: Now, right shift array one byte, zero filling
0D75 73 LD (HL),E • : on the left. C = byte being shifted
0D76 59 LD E,C • : E = previous byte shifted out (initially zero).
0D77 2B DEC HL • : Decrement addr
0D78 15 DEC D • : Decrement count
0D79 20F9 JR NZ,0D74H ---->: Loop till 7 bytes shifted
0D7B 18EE JR 0D6BH --- Loop till shift count < 8
0D7D C609 ADD A,09H --- Continuation of unpacking routine above cont--> *
0D7F 57 LD D,A --- D = number of positions to shift right
0D80 AF XOR A --- Zero A
0D81 E1 POP HL --- HL = addr of MSB
0D82 15 DEC D --- Count no. of places shifted
0D83 C8 RET Z --- Exit from unpacking routine if done shifting
0D84 E5 PUSH HL --- Save addr of MSB
0D85 1E08 LD E,08H --- No. of bytes to shift
0D87 7E LD A,(HL) --- Get a byte, shift it right. Bit 0 to CARRY will
0D88 1F RRA --- become bit 7 of following byte
0D89 77 LD (HL),A --- Restore shifted byte
0D8A 2B DEC HL --- Bump to next byte
0D8B 1D DEC E --- Shifted all bytes
0D8C 20F9 JR NZ,0D87H --- No, loop
0D8E 18F0 JR 0D80H --- Yes, go test if shifted the correct no. of places
0D90 212341 LD HL,4123H --- Addr of exponent *********************** cont--> *
0D93 1601 LD D,01H --- Number of bits to right shift
0D95 18ED JR 0D84H --- Jump to shift routine. Rtn to caller at D83
0D97 0E08 LD C,08H --- No. of bytes to shift left ************* cont--> *
0D99 7E LD A,(HL) --- Fetch a LSB
0D9A 17 RLA --- Shift left 1 so bit 7 goes to CARRY
0D9B 77 LD (HL),A --- And CARRY goes to bit 0.
0D9C 23 INC HL --- Restore shifted value.
0D9D 0D DEC C --- Bump to next most LSB. Count a byte shifted
0D9E 20F9 JR NZ,0D99H --- Jump if 8 bytes not shifted
0DA0 C9 RET --- Else rtn
0DA1 CD5509 CALL 0955H --- Double precision multiplication ******** cont--> *
0DA4 C8 RET Z --- Exit if value zero
0DA5 CD0A09 CALL 090AH --- Adjust exponent. New exponent to 4124.
0DA8 CD390E CALL 0E39H --- Move current value to 414A - 4150 cont--->
0DAB 71 LD (HL),C --- Zero 411C
0DAC 13 INC DE --- DE = 414A = start addr of moved SP value
0DAD 0607 LD B,07H --- B = count of bytes to add
0DAF 1A LD A,(DE) --- Fetch a byte - starting at LSB
0DB0 13 INC DE --- Position to next byte
0DB1 B7 OR A --- Test current byte for zero
0DB2 D5 PUSH DE --- Save current byte address : 1 byte position
0DB3 2817 JR Z,0DCCH --- If current byte zero, shift entire value right
0DB5 0E08 LD C,08H --- No of times to right shift a byte
0DB7 C5 PUSH BC --- Save count of bytes processed, initially B=7,C=8
0DB8 1F RRA --- Right shift LSB so we
0DB9 47 LD B,A --- can test if current bit 0 is a one, if so
0DBA DC330D CALL C,0D33H --- add two unpacked SP numbers. cont--->
0DBD CD900D CALL 0D90H --- Right shift sum 1 place.
0DC0 78 LD A,B --- Restore shifted LSB so we can test
0DC1 C1 POP BC --- rest of bits, then load number of bits

132

0D69 : Unpack a DP number addr of value (starting with MSB) in HL.
: C = MSB, A-reg = no. of bits to right shift. Value is right
: shifted. Shift is byte at a time until shift count < 0
: then it becomes bit at a time.

0D7D * Bit shift portion of right just. for DP value ***************

0D90 * Right shift a DP number pointed to by HL one bit. ***********

0D97 * Left shift a DP number pointed to by HL left one bit.********

0DA1 * Uses repetitive addition. Test exponent of current value. **

0DA8 : (Temp storage), zero current value

0DBA : Add current value to saved value. Sum left in current value

133

0DC2 0D DEC C --- to test. Count 1 bit tested
0DC3 20F2 JR NZ,0DB7H --- Loop till all bits in current byte tested
0DC5 D1 POP DE --- then load addr of next byte to test
0DC6 05 DEC B --- Have all bytes been right justified
0DC7 20E6 JR NZ,0DAFH --- No, loop
0DC9 C3D80C JP 0CD8H --- Yes, normalized result and rtn to caller
0DCC 212341 LD HL,4123H --- HL = addr of WRA1. A = 0
0DCF CD700D CALL 0D70H --- Right shift WRA1 one byte
0DD2 18F1 JR 0DC5H --- Then continue with shift/add loop
0DD4 00 NOP --- Double precision 10 ******************************
0DD5 00 NOP ---
0DD6 00 NOP ---
0DD7 00 NOP ---
0DD8 00 NOP ---
0DD9 00 NOP ---
0DDA 2084 JR NZ,0D60H ---
0DDC 11D40D LD DE,0DD4H --- Addr of double precision 10
0DDF 212741 LD HL,4127H --- Destination address
0DE2 CDD309 CALL 09D3H --- Move a DP 10 to WRA2
0DE5 3A2E41 LD A,(412EH) --- *********** Double precision division ** cont--> *
0DE8 B7 OR A --- Prepare test for zero exponent
0DE9 CA9A19 JP Z,199AH --- /0 error if Z (division by zero)
0DEC CD0709 CALL 0907H --- Compute new exponent. Set WRA1 negative
0DEF 34 INC (HL) --- Restore exponent of
0DF0 34 INC (HL) --- WRA1 to original value
0DF1 CD390E CALL 0E39H --- Move WRA1 value to 414A - 4150 (dividend)
0DF4 215141 LD HL,4151H --- HL = addr of exponent of moved value
0DF7 71 LD (HL),C --- Zero exponent
0DF8 41 LD B,C --- Zero B-reg
0DF9 114A41 LD DE,414AH <---: Addr of LSB of moved WRA1 (dividend)
0DFC 212741 LD HL,4127H • : Addr of LSB of WRA2 (divisor)
0DFF CD4B0D CALL 0D4BH • : Subtract divisor from dividend
0E02 1A LD A,(DE) • : Difference moved to 414A-4151
0E03 99 SBC A,C • : If value in WRA2 was > 414A-4151
0E04 3F CCF • : Decrease MSB of 414A-4151 value
0E05 380B JR C,0E12H • : Jmp if divisor greater than dividend cont-->
0E07 114A41 LD DE,414AH • : DE = addr of moved WRA1 value (dividend)
0E0A 212741 LD HL,4127H • : HL = addr of WRA2 (divisor)
0E0D CD390D CALL 0D39H • : Add them together, sum to 414A
0E10 AF XOR A • : Clear all status flags so we don't exit
0E11 DA1204 JP C,0412H • : E12: LD (DE),A Save new exponent (dividend)
0E14 3A2341 LD A,(4123H) • : E13: INC B Signal 1 subtraction
0E17 3C INC A • : Then load EBB
0E18 3D DEC A • : for dividend.
0E19 1F RRA • : CARRY into sign pos.
0E1A FA110D JP M,0D11H • : Done. Go normalize result
0E1D 17 RLA • : Restore CARRY flag
0E1E 211D41 LD HL,411DH • : HL = addr of original dividend
0E21 0E07 LD C,07H • : No. of bytes to shift
0E23 CD990D CALL 0D99H • : Shift entire dividend left one bit
0E26 214A41 LD HL,414AH • : HL = addr of moved divisor
0E29 CD970D CALL 0D97H • : Shift the moved dividend left one cont-->
0E2C 78 LD A,B • : Get subtraction count
0E2D B7 OR A • : Set status flags
0E2E 20C9 JR NZ,0DF9H --->: Jmp if divisor < dividend
0E30 212441 LD HL,4124H • : Else divisor > dividend. Divide divisor
0E33 35 DEC (HL) • : by 2 by decrementing exponent
0E34 20C3 JR NZ,0DF9H --->: Then repeat subtraction. If divisor goes to
0E36 C3B207 JP 07B2H --- Zero we have an OV error
0E39 79 LD A,C --- Restore MSB of WRA2 value. We need the C-register!

134

0DD4 * ***

0DE5 * Get exponent of divisor *************************************
: Divide WRA1 by WRA2 uses subtraction/shift method

0E05 : else, add difference back to moved current value

0E29 : bit left so they are in synch

0E39 * ***

135

0E3A 322D41 LD (412DH),A --- Load MSB of WRA2
0E3D 2B DEC HL --- HL = MSB of current value
0E3E 115041 LD DE,4150H --- DE addr of temp storage area for current SP value
0E41 010007 LD BC,0700H --- B=no. of bytes to move. C=value to move to current
0E44 7E LD A,(HL) --- Get a byte of the current value :value
0E45 12 LD (DE),A --- Move it to 4150 - 414A
0E46 71 LD (HL),C --- Zero a byte of current value
0E47 1B DEC DE --- Decrement all addresses. We started at the MSB
0E48 2B DEC HL --- and must work down towards the LSB.
0E49 05 DEC B --- Have we moved 7 bytes
0E4A 20F8 JR NZ,0E44H --- No, loop
0E4C C9 RET --- Yes, rtn to caller
0E4D CDFC09 CALL 09FCH --- Move current value ********************* cont--> *
0E50 EB EX DE,HL --- HL = end of current value
0E51 2B DEC HL --- Backup to get exponent
0E52 7E LD A,(HL) --- Load exponent
0E53 B7 OR A --- And test for zero
0E54 C8 RET Z --- Exit if not a flt. pt. no. or value is zero
0E55 C602 ADD A,02H --- Adjust exponent for following addition
0E57 DAB207 JP C,07B2H --- Error if exponent overflow
0E5A 77 LD (HL),A --- Save adjusted exponent
0E5B E5 PUSH HL --- and addr of exponent of saved value
0E5C CD770C CALL 0C77H --- Add current to saved value see note-->
0E5F E1 POP HL --- Restore addr of exponent
0E60 34 INC (HL) --- Adjust it
0E61 C0 RET NZ --- and rtn if no overflow
0E62 C3B207 JP 07B2H --- OV error if exponent is zero
0E65 CD7807 CALL 0778H --- Zero exponent of SP value ** ASCII TO BINARY ** **
0E68 CDEC0A CALL 0AECH --- Flag as DP
0E6B F6AF OR 0AFH --- E6C: XOR A
0E6D EB EX DE,HL --- Save HL (current input symbol)
0E6E 01FF00 LD BC,00FFH --- Initialize HL=00, B=0, C=-0
0E71 60 LD H,B --- Zero H
0E72 68 LD L,B --- and L
0E73 CC9A0A CALL Z,0A9AH --- Flag as integer. Zero accumulator
0E76 EB EX DE,HL --- Restore addr of current input symbol to HL, DE=00
0E77 7E LD A,(HL) --- Fetch 1st char of digit
0E78 FE2D CP 2DH --- Test for minus sign
0E7A F5 PUSH AF --- Save MSD as sign
0E7B CA830E JP Z,0E83H --- Jump if minus sign (bump to next char)
0E7E FE2B CP 2BH --- Test for +
0E80 2801 JR Z,0E83H --- Jump if plus sign (bump to next char)
0E82 2B DEC HL --- Compensate for increment at RST 10
0E83 D7 RST 10H --- Re-examine current character
0E84 DA290F JP C,0F29H --- Jump if character is numeric
0E87 FE2E CP 2EH --- Test for decimal point
0E89 CAE40E JP Z,0EE4H --- Jump if decimal point
0E8C FE45 CP 45H --- Test for E
0E8E 2814 JR Z,0EA4H --- Jump if E exponential type SP
0E90 FE25 CP 25H --- Test for %
0E92 CAEE0E JP Z,0EEEH --- Jump if % force integer
0E95 FE23 CP 23H --- Test for #
0E97 CAF50E JP Z,0EF5H --- Jump if # force double precision
0E9A FE21 CP 21H --- Test for !
0E9C CAF60E JP Z,0EF6H --- Jump if ! force single precision
0E9F FE44 CP 44H --- Test for D
0EA1 2024 JR NZ,0EC7H --- Jump if not D else exponential type DP
0EA3 B7 OR A --- If D ret A-reg non-zero for E, status = 0
0EA4 CDFB0E CALL 0EFBH --- Convert digit to SP or DP :E or D processing
0EA7 E5 PUSH HL --- Save HL so it can be used to hold cont-->

136

0E4D * to saved location ***
: This routine multiplies the current DP
: value by 2 by adding it to itself. First
: current value is moved to saved location
: then DP add routine adds current value
: to saved value.

0E5C : (DP result left in current location)

****** ***

0EA7 : addr which will be pushed onto stack.

137

0EA8 21BD0E LD HL,0EBDH --- Place rtn addr of EBD on stack and
0EAB E3 EX (SP),HL --- Restore HL = next input character. Stack = EBD
0EAC D7 RST 10H --- Examine next char in input stream. Look for sign
0EAD 15 DEC D --- If any of the following tests are true. D=-1
0EAE FECE CP 0CEH --- Control goes to EBD. Else we fall into EBD.
0EB0 C8 RET Z --- Return if - (minus) token (D = -1)
0EB1 FE2D CP 2DH --- Not minus token, test for ASCII minus
0EB3 C8 RET Z --- Return if - character (D = -1)
0EB4 14 INC D --- D = 0 if + sign follows -1 if - sign follows
0EB5 FECD CP 0CDH --- Test for plus (+) token
0EB7 C8 RET Z --- Return if + token (D = 0)
0EB8 FE2B CP 2BH --- Not a + token, test for ASCII plus
0EBA C8 RET Z --- Return if + character (D = 0)
0EBB 2B DEC HL --- Backspace input pointer to E or D
0EBC F1 POP AF --- Remove EBD address from stack
0EBD D7 RST 10H --- Examine next character in input stream
0EBE DA940F JP C,0F94H --- Jmp if next character is numeric
0EC1 14 INC D --- Finalize exponential number ----:D = 0 if - sign
0EC2 2003 JR NZ,0EC7H --->: Jmp if exponent positive :D = +1 if + sign
0EC4 AF XOR A • : Clear A-reg
0EC5 93 SUB E • : A = - value off exponent
0EC6 5F LD E,A • : E = Exponent
0EC7 E5 PUSH HL <---: Save current position in code string
0EC8 7B LD A,E --- E = exponent
0EC9 90 SUB B --- B = count of numbers beyond the dec. pt. cont-->
0ECA F40A0F CALL P,0F0AH <---: Multiply no. by 10
0ECD FC180F CALL M,0F18H • : Divide no. by 10 for each mult. and cont-->
0ED0 20F8 JR NZ,0ECAH --->: Loop till value scaled according to number
0ED2 E1 POP HL --- Restore addr of next symbol :in A reg
0ED3 F1 POP AF --- Get possible sign
0ED4 E5 PUSH HL --- Preserve addr of next symbol
0ED5 CC7B09 CALL Z,097BH --- Value was preceded by a minus sign
0ED8 E1 POP HL --- Restore code string addr
0ED9 E7 RST 20H --- Determine type of data conversion
0EDA E8 RET PE --- Return if not single precision
0EDB E5 PUSH HL --- Save code string addr
0EDC 219008 LD HL,0890H --- Return addr
0EDF E5 PUSH HL --- Save on stack
0EE0 CDA30A CALL 0AA3H --- Make sure value is not exactly -2**16. cont-->
0EE3 C9 RET --- Goto 0890
0EE4 E7 RST 20H --- Determine data type ******************************
0EE5 0C INC C --- C = 0
0EE6 20DF JR NZ,0EC7H --- Fall thru if integer followed by ., or cont-->
0EE8 DCFB0E CALL C,0EFBH --- If not DP convert to single precision
0EEB C3830E JP 0E83H --- Go get next digit
0EEE E7 RST 20H --- Determine data type ******************** cont--> *
0EEF F29719 JP P,1997H --- SN error if P (not an integer)
0EF2 23 INC HL --- Bump to next element in code string
0EF3 18D2 JR 0EC7H --- Go finalize number and return
0EF5 B7 OR A --- Force A-reg non-zero ******** # found ! found **
0EF6 CDFB0E CALL 0EFBH --- Convert value to SP or DP
0EF9 18F7 JR 0EF2H --- Rtn to caller
0EFB E5 PUSH HL --- Save current position in input string ************
0EFC D5 PUSH DE --- Save integer part of number in input string
0EFD C5 PUSH BC --- BC = 00 00
0EFE F5 PUSH AF --- Save flags indicating data type, A = lng
0EFF CCB10A CALL Z,0AB1H --- Convert current value to single precision
0F02 F1 POP AF --- Restore flags
0F03 C4DB0A CALL NZ,0ADBH --- Convert current value to double precision
0F06 C1 POP BC --- Restore B = 00/00

138

0EC9 : A-reg = no. off times to divide/multiply

0ECD : addition at 0F6B - 0F6F. A reg automatically
: bumped by 0F18

0EE0 : If so Set type to integer. Value to 8000

0EE4 * ***

0EE6 : dec. pt. first char.

0EEE * % found - finalize value and exit ***************************

0EF5 * ***

0EFB * ***

139

0F07 D1 POP DE --- Restore integer part of number
0F08 E1 POP HL --- Restore current position in input string
0F09 C9 RET --- Return
0F0A C8 RET Z --- Multiply a SP or DP number by 10 ******* cont--> *
0F0B F5 PUSH AF --- Save caller's AF
0F0C E7 RST 20H --- Determine data type
0F0D F5 PUSH AF --- Save data type
0F0E E43E09 CALL PO,093EH --- Single: multiply current value by 10
0F11 F1 POP AF --- Reload data type
0F12 EC4D0E CALL PE,0E4DH --- Double: multiply current value by 10
0F15 F1 POP AF --- Restore caller's AF
0F16 3D DEC A --- and decrement count of times multiplied
0F17 C9 RET --- Rtn to caller
0F18 D5 PUSH DE --- Divide current SP or DP value by 10 *************
0F19 E5 PUSH HL --- Save caller's registers
0F1A F5 PUSH AF --- DE / HL / AF
0F1B E7 RST 20H --- Determine data type
0F1C F5 PUSH AF --- A = type
0F1D E49708 CALL PO,0897H --- Divide current value by 10
0F20 F1 POP AF --- Reload type so we'll skip other call
0F21 ECDC0D CALL PE,0DDCH --- Double: divide current value by 10
0F24 F1 POP AF --- Restore users registers
0F25 E1 POP HL --- AF / HL
0F26 D1 POP DE --- and DE then increment
0F27 3C INC A --- Count of times divided
0F28 C9 RET --- Rtn to caller
0F29 D5 PUSH DE --- DE = 00 00 ***************************************
0F2A 78 LD A,B --- B = 00
0F2B 89 ADC A,C --- CARRY is always set when entered, see note-->
0F2C 47 LD B,A --- B = 0 for integer conversion. Count of cont-->
0F2D C5 PUSH BC --- Save 0 or count
0F2E E5 PUSH HL --- Save position in input string
0F2F 7E LD A,(HL) --- Ref etch current character
0F30 D630 SUB 30H --- A= 0 - 9
0F32 F5 PUSH AF --- Save binary value for current digit
0F33 E7 RST 20H --- Determine data type we're converting to
0F34 F25D0F JP P,0F5DH --- Jump if not an integer. A = current digit
0F37 2A2141 LD HL,(4121H) --- ASCII to integer conversion
0F3A 11CD0C LD DE,0CCDH --- DE = 3277
0F3D DF RST 18H --- Compare current value to 3277
0F3E 3019 JR NC,0F59H --- Jump, value >= 3277
0F40 54 LD D,H --- DE = current value
0F41 5D LD E,L --- Multiply by 10
0F42 29 ADD HL,HL --- * 2
0F43 29 ADD HL,HL --- * 4
0F44 19 ADD HL,DE --- * 5
0F45 29 ADD HL,HL --- * 10
0F46 F1 POP AF --- Reload current digit
0F47 4F LD C,A --- Binary value of current digit
0F48 09 ADD HL,BC --- Add units digit
0F49 7C LD A,H --- Now test sign of value thus far
0F4A B7 OR A --- Ret status flags
0F4B FA570F JP M,0F57H --- Jump if value exceeds 2 ** 15
0F4E 222141 LD (4121H),HL --- Save binary value
0F51 E1 POP HL --- Restore HL, BC, and DE
0F52 C1 POP BC --- B= count of digits after dec. pt. cont-->
0F53 D1 POP DE --- Possible sign flags
0F54 C3830E JP 0E83H --- Get next digit
0F57 79 LD A,C --- A = current digit
0F58 F5 PUSH AF --- Save so it can be converted to SP then cont-->

140

0F0A * Exit if integer ***

0F18 * **

0F29 * **

0F2B : C = 00 for SP, = FF for integer
0F2C : integers for SP conversion after decimal point

0F52 : C=FF until a dec. pt. encountered

0F58 : added to current value after current value is converted to SP

141

0F59 CDCC0A CALL 0ACCH --- Convert current value to SP
0F5C 37 SCF --- So we'll bypass calls to convert to DP
0F5D 3018 JR NC,0F77H --- Jump if double
0F5F 017494 LD BC,9474H --- ASCII to SP Load a SP 16X10E6 into BC/DE
0F62 110024 LD DE,2400H --- 16X10E6 to current SP no. in (4121 - 4124)
0F65 CD0C0A CALL 0A0CH --- Compare
0F68 F2740F JP P,0F74H --- Jmp if current value >2E16 go convert to DP
0F6B CD3E09 CALL 093EH --- Multiply current value by 10 cont-->
0F6E F1 POP AF --- A = current digit
0F6F CD890F CALL 0F89H --- Convert current digit to SP format cont-->
0F72 18DD JR 0F51H --- Go get next digit. Count of digits cont-->
0F74 CDE30A CALL 0AE3H --- Initialize DP 411D, 411F. Flag value as DP
0F77 CD4D0E CALL 0E4DH --- Multiply current SP value by 10
0F7A CDFC09 CALL 09FCH --- Move DP no. in (4121 - 4126) to (4127 - 412E)
0F7D F1 POP AF --- A = binary value for current digit
0F7E CD6409 CALL 0964H --- Convert current digit to SP
0F81 CDE30A CALL 0AE3H --- Initialize DP cells 411D, 411E to zero
0F84 CD770C CALL 0C77H --- Add current SP digit to current SP value
0F87 18C8 JR 0F51H --- Go get next digit
0F89 CDA409 CALL 09A4H --- Save current value (4121-4123) on stk ** note--> *
0F8C CD6409 CALL 0964H --- Convert value in A-reg to a single prec. value
0F8F C1 POP BC --- Load current SP value into BC/DE
0F90 D1 POP DE --- B = exponent, C = MSB, D = next MSB, C = LSB
0F91 C31607 JP 0716H --- Add value in registers to current cont-->
0F94 7B LD A,E --- A = exponent thus far ************** see note--> *
0F95 FE0A CP 0AH --- Compare with 10
0F97 3009 JR NC,0FA2H --- If => 10. Force it to a constant 32
0F99 07 RLCA --- Then multiply current value by 10
0F9A 07 RLCA --- *4
0F9B 83 ADD A,E --- +1 gives times 5
0F9C 07 RLCA --- *2 gives times 10
0F9D 86 ADD A,(HL) --- Fetch current digit (in ASCII)
0F9E D630 SUB 30H --- Convert it to its binary equivalent cont-->
0FA0 5F LD E,A --- Current digit to E
0FA1 FA1E32 JP M,321EH --- 0FA2 = LD E,32
0FA4 C3BD0E JP 0EBDH --- Get next digit from input string. Rtn to F94
0FA7 E5 PUSH HL --- Save code string addr ****************************
0FA8 212419 LD HL,1924H --- Load addr of IN message
0FAB CDA728 CALL 28A7H --- Output message
0FAE E1 POP HL --- Restore code string addr
0FAF CD9A0A CALL 0A9AH --- Save value in HL as current value ****** cont--> *
0FB2 AF XOR A --- Signal no editing when converting
0FB3 CD3410 CALL 1034H --- Initialize print buffer
0FB6 B6 OR (HL) --- Set status to NON-ZERO for test at OF E7
0FB7 CDD90F CALL 0FD9H --- Convert current value to ASCII
0FBA C3A628 JP 28A6H --- Output value & rtn to caller
0FBD AF XOR A --- Clear edit flags ******************* see note--> *
0FBE CD3410 CALL 1034H --- Output buffer addr to HL. Edit flags to 40D8
0FC1 E608 AND 08H --- Test if sign requested in output
0FC3 2802 JR Z,0FC7H --->: Jmp if no leading + sign required
0FC5 362B LD (HL),2BH -- : Plus sign
0FC7 EB EX DE,HL <---: Save addr of output buffer in DE
0FC8 CD9409 CALL 0994H --- Determine sign of current value
0FCB EB EX DE,HL --- Restore output buffer addr to HL
0FCC F2D90F JP P,0FD9H --- Jmp if value is positive
0FCF 362D LD (HL),2DH --- Minus sign to PBUF
0FD1 C5 PUSH BC --- Save count of #'s before & after decimal point
0FD2 E5 PUSH HL --- Current position in print buffer
0FD3 CD7B09 CALL 097BH --- Convert a neg. number to its positive equivalent
0FD6 E1 POP HL --- Restore print buffer address

142

0F6B : We'll divide out multiplication later

0F6F : & add to number thus far
0F72 : after dec. pt. in B-reg

0F89 * ***** Converts the 8 bit value in the A-reg to a SP *******
: number and adds it to the current value in WRA1

0F91 : value (4121 - 4124). Rtn to caller
0F94 * ***** Accumulate value for exponent in E-reg. Do not *******

: let it exceed 50 (base 10). Called when processing
: exponents for E or D type values.

: and add to current value

0F94 * ***

0FAF * Set type to integer ********* Convert no. in HL to ASCII ****
: and write to video

0FBD * ***** Convert binary to ASCII. Build print buffer using ****
: edit flags in A. On entry
: B = count of #'s before
: C = count of #'s after

143

0FD7 C1 POP BC --- Restore counter
0FD8 B4 OR H --- Combine 41 with positive MSB
0FD9 23 INC HL --- HL = 4131H
0FDA 3630 LD (HL),30H --- ASCII zero to next position in print buffer
0FDC 3AD840 LD A,(40D8H) --- A = edit flags
0FDF 57 LD D,A --- Save edit flags in D
0FE0 17 RLA --- Prepare to test bit 2**15 (print using) call
0FE1 3AAF40 LD A,(40AFH) --- A = type/length of current variable
0FE4 DA9A10 JP C,109AH --- Jmp if called from PRINT USING
0FE7 CA9210 JP Z,1092H --- Jmp to exit if edit flag is zero
0FEA FE04 CP 04H --- Test data type
0FEC D23D10 JP NC,103DH --- Jmp if SNG or DOUBLE
0FEF 010000 LD BC,0000H --- BC = flag for no commas or dec. pts.
0FF2 CD2F13 CALL 132FH --- Convert integer number to ASCII in work area
0FF5 213041 LD HL,4130H --- Start of ASCII buffer :(current value)
0FF8 46 LD B,(HL) --- B = first ASCII character in buffer
0FF9 0E20 LD C,20H --- Blank
0FFB 3AD840 LD A,(40D8H) --- Get editing parameter word. See if we must test
0FFE 5F LD E,A --- for and identify numbers out of range.
0FFF E620 AND 20H --- Test if leading *'s wanted
1001 2807 JR Z,100AH --- Do not test for out of range numbers.
1003 78 LD A,B --- If first char in PBUF <> blank, cont-->
1004 B9 CP C --- Compare PBUF(1) with blank, if not equal replace
1005 0E2A LD C,2AH --- PBUF(1) with an *. C = *
1007 2001 JR NZ,100AH --- Number has not overflowed
1009 41 LD B,C --- Number has overflowed
100A 71 LD (HL),C --- Replace PBUF(1) with *
100B D7 RST 10H --- If no range checks, unconditionally cont-->
100C 2814 JR Z,1022H --- Jump if binary zero (end of buffer)
100E FE45 CP 45H --- Test for E
1010 2810 JR Z,1022H --- Jump if E
1012 FE44 CP 44H --- Test for D : Scan print buffer
1014 280C JR Z,1022H --- Jump if D : looking for an E, 0,
1016 FE30 CP 30H --- Test for 0 : ., or end of print
1018 28F0 JR Z,100AH --- Jump if ASCII zero : buffer. Replace zeroes
101A FE2C CP 2CH --- Test for comma : with blanks.
101C 28EC JR Z,100AH --- Jump if comma
101E FE2E CP 2EH --- Test for decimal point
1020 2003 JR NZ,1025H --- Jump if not decimal point
1022 2B DEC HL --- We have a decimal point, end of line or a D or E
1023 3630 LD (HL),30H --- Backspace to previous byte and replace it with an
1025 7B LD A,E --- A = edit flags :ASCII 0
1026 E610 AND 10H --- Test for leading $ insertion
1028 2803 JR Z,102DH --- No
102A 2B DEC HL --- Yes, backspace one more byte
102B 3624 LD (HL),24H --- And insert a $
102D 7B LD A,E --- Re-fetch edit flags
102E E604 AND 04H --- Test if sign follows value
1030 C0 RET NZ --- No, rtn
1031 2B DEC HL --- Yes, backspace print buffer
1032 70 LD (HL),B --- Save sign
1033 C9 RET --- then rtn
1034 32D840 LD (40D8H),A --- Save edit flags **********************************
1037 213041 LD HL,4130H --- HL = Starting addr of line buffer (PBUF)
103A 3620 LD (HL),20H --- Blank if first char. in print buffer
103C C9 RET --- Rtn to caller
103D FE05 CP 05H --- Convert SP or DP to ASCII ************** cont--> *
103F E5 PUSH HL --- Save current position in PBUF
1040 DE00 SBC A,00H --- A = 4 if SP, A = 8 if DP
1042 17 RLA --- A = 8 if SP, A = 10 if DP

144

1003 : then number has overflowed

100B : replace 1st char in buffer with a blank.

1034 * ***

103D * Set CARRY if double precision *******************************

145

1043 57 LD D,A --- D = Adjust type flag
1044 14 INC D --- D = 9 (SP), D = B (DP)
1045 CD0112 CALL 1201H --- Scale no. to 99,999 < X < 999,999
1048 010003 LD BC,0300H --- After scaling, A = count of times DP value scaled
104B 82 ADD A,D --- Up (positive), or down (negative)
104C FA5710 JP M,1057H --->: Jmp if scaled down more than 9 or 11 places
104F 14 INC D -- : D = A (SP) or C (DP)
1050 BA CP D -- : Test if value was not scaled at all
1051 3004 JR NC,1057H --->: Jmp if scaled up or down
1053 3C INC A -- : A = no. of digits in value
1054 47 LD B,A -- : Save in B
1055 3E02 LD A,02H -- : Force exponent to zero
1057 D602 SUB 02H <---: Compute exponent value
1059 E1 POP HL --- Restore PBUF addr
105A F5 PUSH AF --- Save exponent
105B CD9112 CALL 1291H --- Initialize commas & dec. pt. routine
105E 3630 LD (HL),30H --- Put an ASCII zero into current pos. in print
1060 CCC909 CALL Z,09C9H --- Increment HL if no scaling was done :buffer
1063 CDA412 CALL 12A4H --- Convert binary to ASCII. Result to PBUF
1066 2B DEC HL --- Backspace PBUF to previous char see note-->
1067 7E LD A,(HL) --- Load previous char
1068 FE30 CP 30H --- Compare to an ASCII zero
106A 28FA JR Z,1066H --- Loop till a non-zero char. found
106C FE2E CP 2EH --- Test for dec. pt.
106E C4C909 CALL NZ,09C9H --- Call if not decimal point (increment cont-->
1071 F1 POP AF --- Restore exponent
1072 281F JR Z,1093H --- Jump if exponent is zero
1074 F5 PUSH AF --- Save exponent
1075 E7 RST 20H --- Test data type
1076 3E22 LD A,22H --- This will become a D or
1078 8F ADC A,A --- E depending on whether value is SP or DP
1079 77 LD (HL),A --- Save exponent designation
107A 23 INC HL --- Bump to first pos. of exponent in buffer
107B F1 POP AF --- Reload exponent value
107C 362B LD (HL),2BH --- + (exponent)
107E F28510 JP P,1085H --- Jmp if exponent is positive
1081 362D LD (HL),2DH --- - (exponent)
1083 2F CPL --- Convert negative exponent
1084 3C INC A --- to its positive equivalent
1085 062F LD B,2FH --- B = start of ASCII values 0, 1, 2 9
1087 04 INC B --- Start of divide by 10 using compound cont-->
1088 D60A SUB 0AH --- Subtract 10 until
108A 30FB JR NC,1087H --- Remainder < 10. B = quotient
108C C63A ADD A,3AH --- Convert remainder to an ASCII digit
108E 23 INC HL --- Bump to next pos. in PBUF
108F 70 LD (HL),B --- 1st digit of exponent
1090 23 INC HL --- Bump to next pos. in PBUF
1091 77 LD (HL),A --- 2nd digit of exponent
1092 23 INC HL --- Bump to next pos. in PBUF
1093 3600 LD (HL),00H --- 00 marks end of ASCII number
1095 EB EX DE,HL --- DE = ending addr. of PBUF
1096 213041 LD HL,4130H --- HL = starting addr. of PBUF
1099 C9 RET --- Ret. to caller
109A 23 INC HL --- Bump to next location in PBUF ********** cont--> *
109B C5 PUSH BC --- B = count of #'s before. C = count of #'s after
109C FE04 CP 04H --- A = data type. Test for integer/floating point
109E 7A LD A,D --- A = edit flags
109F D20911 JP NC,1109H --- Jmp if single or double precision
10A2 1F RRA --- Position exponential notation flag
10A3 DAA311 JP C,11A3H --- Jmp if current variable is string, else cont-->

146

1066 : Backspace PBUF to first non-zero value

106E : HL to first char after dec. pt.)

1087 : subtraction loop: Convert value in A-register

: to a true digit ASCII value.
: Divide by 10 using compound subtraction

109A * Edit operations for PRINT USING *****************************

10A3 : must be integer

147

10A6 010306 LD BC,0603H --- B = no. of leading digits C = comma cont-->
10A9 CD8912 CALL 1289H --- Test comma flag. If not set zero C
10AC D1 POP DE --- D = count of #'s before dec. pt.
10AD 7A LD A,D --- Count to A
10AE D605 SUB 05H --- Compare to 5 (max no. digits allowed in integer)
10B0 F46912 CALL P,1269H --- Fill PBUF with leading zeroes. If cont-->
10B3 CD2F13 CALL 132FH --- Convert current value (integer) to cont-->
10B6 7B LD A,E --- Load count of #'s after dec. pt. into A
10B7 B7 OR A --- and set status flags
10B8 CC2F09 CALL Z,092FH --- If no trailing #'s, backspace PBUF
10BB 3D DEC A --- Test if no count given
10BC F46912 CALL P,1269H --- Else add count trailing zeros
10BF E5 PUSH HL --- Save current PBUF addr
10C0 CDF50F CALL 0FF5H --- Edit ASCII buffer w/ converted number in it
10C3 E1 POP HL --- Restore HL to PBUF addr
10C4 2802 JR Z,10C8H --->: Jmp if sign follows value
10C6 70 LD (HL),B -- : No. store a blank after value
10C7 23 INC HL -- : Bump to next pos. in PBUF
10C8 3600 LD (HL),00H <---: Terminate buffer with a byte of zeros
10CA 212F41 LD HL,412FH --- Start of ASCII print buffer minus 1
10CD 23 INC HL --- Bump to next pos. in PBUF note-->
10CE 3AF340 LD A,(40F3H) --- A = LSB of addr of dec. pt. in PBUF
10D1 95 SUB L --- Compare to LSB of current PBUF
10D2 92 SUB D --- Then subtract length of field
10D3 C8 RET Z --- Exit if start of field located
10D4 7E LD A,(HL) --- Not start of field, then fetch char and
10D5 FE20 CP 20H --- Test for blank
10D7 28F4 JR Z,10CDH --- Loop till start of field or +, -, $ found
10D9 FE2A CP 2AH --- Test for *
10DB 28F0 JR Z,10CDH --- Ignore blanks and
10DD 2B DEC HL --- Backspace to previous char so it can be re-tested
10DE E5 PUSH HL --- Save PBUF addr
10DF F5 PUSH AF --- Save current char
10E0 01DF10 LD BC,10DFH --- Return addr in case of -, +, $
10E3 C5 PUSH BC --- to stack
10E4 D7 RST 10H --- Re-examine char
10E5 FE2D CP 2DH --- Compare with a -
10E7 C8 RET Z --- Exit to 10DF if a minus
10E8 FE2B CP 2BH --- Not - try a +
10EA C8 RET Z --- Exit to 10DF if a plus
10EB FE24 CP 24H --- Not + or -, try $
10ED C8 RET Z --- Exit to 10DF if $
10EE C1 POP BC --- Clear rtn addr. of 10DF
10EF FE30 CP 30H --- Test for ASCII 0 (leading 0)
10F1 200F JR NZ,1102H --->: Jump if not leading 0
10F3 23 INC HL -- : Skip next char
10F4 D7 RST 10H -- : and examine following one
10F5 300B JR NC,1102H -- : Jump if not numeric
10F7 2B DEC HL -- : Backspace to last char examined
10F8 012B77 LD BC,772BH -- : 10F9: DEC HL :Backspace one more char
10FB F1 POP AF -- : 10FA: LD (HL),A :Shift digits up 1 pos.
10FC 28FB JR Z,10F9H -- : Loop till end of field reached
10FE C1 POP BC -- : Clear stack
10FF C3CE10 JP 10CEH -- : Restart scan
1102 F1 POP AF <---: Restore char at start of field
1103 28FD JR Z,1102H --- Loop till beginning of field found
1105 E1 POP HL --- Restore starting addr of field
1106 3625 LD (HL),25H --- Replace it with a
1108 C9 RET --- Rtn to caller
1109 E5 PUSH HL --- Save current PBUF addr. ************ see note--> *

148

10A6 : counter Integer editing for PRINT USING

10B0 : more than 5 digits
10B3 : ASCII. Result to PBUF

: Locate start of field in PBUF and
: rtn to caller. If field starts with
: a +, -, or $ goto 10DF before returning
: to caller. Search for field by starting
: at addr. of dec. pt. and backspacing
: size of field (D-reg)

1109 * *********** Floating point editing **************************

149

110A 1F RRA --- Test bit 0 of edit flags see note-->
110B DAAA11 JP C,11AAH --- Jmp if exponential notation on flt. pt. number
110E 2814 JR Z,1124H --->: Jump if value is SP
1110 118413 LD DE,1384H • : DE = addr of DP 1X10**16
1113 CD490A CALL 0A49H • : Compare value to 1X10**16
1116 1610 LD D,10H • : D = no. of digits in a DP field
1118 FA3211 JP M,1132H ----:--:>: Jmp if value < 1X10**16 else
111B E1 POP HL <---:--: : Restore current location in print buffer
111C C1 POP BC • : : : B=count of #'s before, C=count of #'S after
111D CDBD0F CALL 0FBDH • : : : Reenter edit routine till value < 1X10**16
1120 2B DEC HL • : : : Restore buffer addr. current position
1121 3625 LD (HL),25H • : : : Store a % (start of spaces field)
1123 C9 RET • : : : Rtn to caller
1124 010EB6 LD BC,0B60EH <---: : : BC/DE = 1 X 10E16 *********** see note-->
1127 11CA1B LD DE,1BCAH • : :
112A CD0C0A CALL 0A0CH • : : Compare edit value to 1 X 10E16
112D F21B11 JP P,111BH ------>: : Jmp if edit value > 1X10E16
1130 1606 LD D,06H --- : D = no. of digits to print (size of field)
1132 CD5509 CALL 0955H <--------: Test sign of current value
1135 C40112 CALL NZ,1201H --- Scale SP value to 99,999<X<999,999 cont-->
1138 E1 POP HL --- HL = origin of ASCII buffer
1139 C1 POP BC --- B=count of #'s before, C=count of #'s afterwards
113A FA5711 JP M,1157H --->: Jmp if value was scaled up (multiplied by 10)
113D C5 PUSH BC -- : Save count of #'s before and after dec. pt.
113E 5F LD E,A -- : E=count of times value was divided
113F 78 LD A,B -- : B=no. of user specified #'s before note-->
1140 92 SUB D -- : D=6
1141 93 SUB E -- : E = no. of times edit value divided by 10
1142 F46912 CALL P,1269H -- : Put leading ASCII zeroes into PBUF
1145 CD7D12 CALL 127DH -- : Compute count of dec. pts. and commas
1148 CDA412 CALL 12A4H -- : Convert integer of SP number to ASCII
114B B3 OR E -- : Test count of times value scaled
114C C47712 CALL NZ,1277H -- : Add trailing zeroes for each time value scaled
114F B3 OR E -- : Set status flag
1150 C49112 CALL NZ,1291H -- : Place decimal point/commas in numeric buffer
1153 D1 POP DE -- : Restore edit counts
1154 C3B610 JP 10B6H -- : Go convert fractional portion of no. to ASCII
1157 5F LD E,A <---: E=count of times value scaled up (mult. by 10) *
1158 79 LD A,C -- C=count of digits following dec. pt cont-->
1159 B7 OR A --- Test count
115A C4160F CALL NZ,0F16H --- Decrement count of trailing #'s by cont-->
115D 83 ADD A,E --- A=((no. trailing #'s)-1) + cont-->
115E FA6211 JP M,1162H --->: Jmp if value needs to be scaled down
1161 AF XOR A -- : Signal no down-scaling
1162 C5 PUSH BC <---: Save before & after counters
1163 F5 PUSH AF --- Save scale count
1164 FC180F CALL M,0F18H <---: Divide current value by 10 (A) times
1167 FA6411 JP M,1164H --->: After each division, A-reg is incremented
116A C1 POP BC --- Original scale count
116B 7B LD A,E --- A = count of times value multiplied by 10
116C 90 SUB B --- Minus scale value
116D C1 POP BC --- Restore before and after dec. pt. counter
116E 5F LD E,A --- Adjusted scale factor
116F 82 ADD A,D --- Plus size of field (set sign flag)
1170 78 LD A,B --- A = count of #'s before dec. pt.
1171 FA7F11 JP M,117FH --- Jmp no leading digits
1174 92 SUB D --- Else subtract field size (6 for SP, cont-->
1175 93 SUB E --- Then subtract adjusted scale
1176 F46912 CALL P,1269H --- Add trailing zeroes
1179 C5 PUSH BC --- Save count of #'s before and after dec. pt.

150

: For PRINT USING

1124 * ***** Edit SP value or a DP value <1Xl0E16 ****************

1135 : On rtn A = times value scaled up or down as + or -

: Value was scaled down or not
: scaled at all. Adjust scale for
: no. of places before dec. Pt.

1157 * ***
1158 : to print. Value was scaled up. Adjust scale

: for no. of places following dec. pt.
115A : one if its non-zero
115D : (-no. of times value scaled up)

1174 : 10 for DP) from adjusted size

151

117A CD7D12 CALL 127DH --- Setup B/C for dec. pt. and comma counters
117D 1811 JR 1190H --- Go edit number before dec. pt.
117F CD6912 CALL 1269H --- insert a zero into PBUF **************************
1182 79 LD A,C --- Save comma counter Will be wiped by call 1294
1183 CD9412 CALL 1294H --- Add dec. pt. to PBUF gives 0
1186 4F LD C,A --- Restore comma counter to C-reg
1187 AF XOR A --- Zero to A-reg
1188 92 SUB D --- Now, get diff. between requested
1189 93 SUB E --- field size and scaled field size
118A CD6912 CALL 1269H --- Then add that many zeroes to PBUF
118D C5 PUSH BC --- Save count or #'s before and after dec. pt.
118E 47 LD B,A --- Zero B
118F 4F LD C,A --- Zero C
1190 CDA412 CALL 12A4H --- Convert integer portion of SP value to integer
1193 C1 POP BC --- Restore counters :ASCII
1194 B1 OR C --- Set status for count of #'s after dec. pt.
1195 2003 JR NZ,119AH --- Jmp if digits follow dec. pt.
1197 2AF340 LD HL,(40F3H) --- Else load addr. of dec. pt. in PBUF
119A 83 ADD A,E --- Gives no. of digits before dec. pt.
119B 3D DEC A --- Minus 1
119C F46912 CALL P,1269H --- Add that many zeros to PBUF
119F 50 LD D,B --- Set D = no. of #'s before
11A0 C3BF10 JP 10BFH --- Go edit ASCII value
11A3 E5 PUSH HL --- Save current position in PBUF ******* see note--> *
11A4 D5 PUSH DE --- Save edit flags
11A5 CDCC0A CALL 0ACCH --- Convert integer to single precision
11A8 D1 POP DE --- Restore edit flags
11A9 AF XOR A --- Clear status flags. Force Jmp for SP
11AA CAB011 JP Z,11B0H --- Jmp if single precision SP/DP entry pt.
11AD 1E10 LD E,10H --- E = no. digits to print if DP
11AF 011E06 LD BC,061EH --- 11B0: LD E,6 E = no. digits to print if SP
11B2 CD5509 CALL 0955H --- Test sign of current value
11B5 37 SCF --- Force Jmp at 11F3 on first pass
11B6 C40112 CALL NZ,1201H --- If current value not zero, go scale it
11B9 E1 POP HL --- Restore PBUF addr.
11BA C1 POP BC --- Restore count of # s before and after
11BB F5 PUSH AF --- Decimal point, save flag for test at 11F3
11BC 79 LD A,C --- A = count of # s after
11BD B7 OR A --- Set status so we can test for zero
11BE F5 PUSH AF --- Save original trailing digit count
11BF C4160F CALL NZ,0F16H --- If trail count non-zero, decrement it
11C2 80 ADD A,B --- Combine count of before & after
11C3 4F LD C,A --- Save total digit count
11C4 7A LD A,D --- Load edit flags
11C5 E604 AND 04H --- Isolate sign follows value flag
11C7 FE01 CP 01H --- Gives no CARRY if sign follows
11C9 9F SBC A,A --- A = 0 if no sign, FE otherwise
11CA 57 LD D,A --- Save new edit flag
11CB 81 ADD A,C --- Adjust count of digits to print if sign follows
11CC 4F LD C,A --- Save adjusted count
11CD 93 SUB E --- A = number of times to divide by 10
11CE F5 PUSH AF --- Save divisor count
11CF C5 PUSH BC --- Save char. count
11D0 FC180F CALL M,0F18H <---: Divide value by 10 (A) times
11D3 FAD011 JP M,11D0H --->: Loop till division completed
11D6 C1 POP BC --- Restore counter of #'s
11D7 F1 POP AF --- Restore division count
11D8 C5 PUSH BC --- Then resave
11D9 F5 PUSH AF --- Registers and
11DA FADE11 JP M,11DEH --- Jmp if any trailing zeros

152

117F : **

11A3 * Exponential formatting for PRINT USING **********************
: 11A3 - Entry pt. INTEGER
: 11AA - Entry pt. SP/DP

153

11DD AF XOR A --- Clear A, status flags
11DE 2F CPL --- Make trailing zero count positive
11DF 3C INC A --- 2's complement
11E0 80 ADD A,B --- Add size of field before dec. pt.
11E1 3C INC A --- Plus one more
11E2 82 ADD A,D --- Add size of field (6/SP, 10/DP)
11E3 47 LD B,A --- B = number of digits before dec. pt.
11E4 0E00 LD C,00H --- Signal no commas
11E6 CDA412 CALL 12A4H --- Convert value to ASCII
11E9 F1 POP AF --- Restore original count of #'s before
11EA F47112 CALL P,1271H --- Add trailing zeros
11ED C1 POP BC --- Restore counts of nos. before and after dec. pt.
11EE F1 POP AF --- Get count of nos. before dec. pt.
11EF CC2F09 CALL Z,092FH --- None before, backspace PBUF addr 1 byte
11F2 F1 POP AF --- Get first time flag. If set, clear stack,
11F3 3803 JR C,11F8H --- Add exponent, and join common edit code.
11F5 83 ADD A,E --- Otherwise, add default field size to + 1 if pos.
11F6 90 SUB B --- Or a - 1 if neg.. Then subtract actual
11F7 92 SUB D --- Number of chars in field to get size of exponent
11F8 C5 PUSH BC --- Save BC
11F9 CD7410 CALL 1074H --- Compute and add exponent to PBUF
11FC EB EX DE,HL --- Restore HL
11FD D1 POP DE --- Clear stack
11FE C3BF10 JP 10BFH --- Go edit ASCII value
1201 D5 PUSH DE --- Test magnitude of SP and DP numbers **** cont--> *
1202 AF XOR A --- Zero A and flags, save zero
1203 F5 PUSH AF --- On stack see note-->
1204 E7 RST 20H --- Test data type
1205 E22212 JP PO,1222H --- Jump if single
1208 3A2441 LD A,(4124H) --- Must be double, get the exponent into A
120B FE91 CP 91H --- Compute no. of bits in integer portion of number
120D D22212 JP NC,1222H --- Jmp if 17 or more bits in integer portion of
1210 116413 LD DE,1364H --- DE=addr of DP 5.5X10E2 :DP value
1213 212741 LD HL,4127H --- Destination addr
1216 CDD309 CALL 09D3H --- Move 5.5X10E8 to saved value location
1219 CDA10D CALL 0DA1H --- Multiply 5.5X10E8 times current value
121C F1 POP AF --- A = count of times DP value multiplied to scale
121D D60A SUB 0AH --- A = count - 10 :it up
121F F5 PUSH AF --- Save for testing
1220 18E6 JR 1208H -- Loop till integer portion exceeds 2E16
1222 CD4F12 CALL 124FH --- Compare current value to 999,999, ****** cont--> *
1225 E7 RST 20H <------: Test data type
1226 EA3412 JP NC,1234H • : Jump if not single
1229 014391 LD BC,9143H • : BC/DE = SP 99,999 decimal
122C 11F94F LD DE,4FF9H • :
122F CD0C0A CALL 0A0CH • : Compare current value to 99,999
1232 1806 JR 1239H --->: : Go test results of comparison
1234 116C13 LD DE,136CH • : : DE addr of SP 1.44X10E17
1237 CD490A CALL 0A49H • : : Compare current value to 1.44X10E17
123A F24C12 JP P,124CH <---:--:-->: Jmp if value > 99,999 see note-->
123D F1 POP AF • : : : A = scaled counter
123E CD0B0F CALL 0F0BH • : : : Multiply current value by 10
1241 F5 PUSH AF • : : : A = - no. of times value multiplied
1242 18E1 JR 1226H ------>: : Loop till between 999,999 and 99,999
1244 F1 POP AF --- : A = scaled count
1245 CD180F CALL 0F18H --- : Divide value by 10. It's > 999,999
1248 F5 PUSH AF --- : Keep count of times divided
1249 CD4F12 CALL 124FH --- : Loop till value < 999,999
124C F1 POP AF <----------: A = + times divided : - times multiplied
124D D1 POP DE --- Restore callers DE

154

1201 * Clear times value scaled ************************************

: Scale a single or double precision number
: so it lies between 99,999 and 999,999.
: On exit A = +(times value divided), or
: -(times multiplied).

1222 * Rtn in line if value smaller ********************************
: Scale SP and DP numbers so that 99,999<SP<999,999

123A : (more than 5 digits in integer or less than 17 digits in DP)

155

124E C9 RET --- Rtn to caller
124F E7 RST 20H --- Test data type ***********************************
1250 EA5E12 JP PE,125EH --- Jump if double precision
1253 017494 LD BC,9474H --- BC/DE = 999,999 decimal
1256 11F823 LD DE,23F8H ---
1259 CD0C0A CALL 0A0CH --- Compare current value to 999,999 decimal
125C 1806 JR 1264H --- Test result of comparison
125E 117413 LD DE,1374H --- DE = address *************************************
1261 CD490A CALL 0A49H --- Compare current value
1264 E1 POP HL --- Clear rtn addr so we can go to 1244
1265 F24312 JP P,1243H --- Jmp if current value has more than 6 digits in
1268 E9 JP (HL) --- Else rtn to caller :integer
1269 B7 OR A --- Test zero flag ********************* see note--> *
126A C8 RET Z <---: in HL.
126B 3D DEC A • : Count 1 ASCII zero moved to print buffer
126C 3630 LD (HL),30H • : Move an ASCII zero
126E 23 INC HL • : Bump destination address
126F 18F9 JR 126AH --->: Loop till 'A' ASCII zeroes moved
1271 2004 JR NZ,1277H --- If not done adding trailing zeroes else exit ****
1273 C8 RET Z --- Rtn to caller if trailing zeros added
1274 CD9112 CALL 1291H --- Decimal point/commas in numeric buffer
1277 3630 LD (HL),30H --- Add a trailing ASCII zero to print buffer
1279 23 INC HL --- Bump print buffer add
127A 3D DEC A --- Count of trailing zeroes to add
127B 18F6 JR 1273H --- Go test for completion
127D 7B LD A,E --- A = count of times value scaled up or down *******
127E 82 ADD A,D --- D = no. of digits to print
127F 3C INC A --- Plus 1 gives no. of digits before dec. pt.
1280 47 LD B,A --- B = leading digit count
1281 3C INC A --- Gives leading digits +2 note-->
1282 D603 SUB 03H --- Divide modulo 3
1284 30FC JR NC,1282H <---: Loop till A = -1, -2, or -3
1286 C605 ADD A,05H --->: Add 5 (get positive remainder) gives 4, 3, or 2
1288 4F LD C,A --- C = comma counter
1289 3AD840 LD A,(40D8H) --- A = edit flags. Test for comma flag
128C E640 AND 40H --- Isolate comma bit in edit flag word
128E C0 RET NZ --- Exit with C = comma count if commas requested
128F 4F LD C,A --- Else force comma count to zero
1290 C9 RET --- Rtn to caller
1291 05 DEC B --- Count 1 leading digit ****************************
1292 2008 JR NZ,129CH --->: Jmp if all leading digits not stored cont-->
1294 362E LD (HL),2EH -- : Leading digit stored. Add decimal pt.
1296 22F340 LD (40F3H),HL -- : Save addr of dec. pt. in buffer
1299 23 INC HL -- : Bump to first char of fractional part of number
129A 48 LD C,B -- : Set C and B to zero to inhibit any more dec. pts.
129B C9 RET -- : and commas. Rtn to caller
129C 0D DEC C <---: Count one char stored **************************
129D C0 RET NZ --- Rtn if not end of 3 character group
129E 362C LD (HL),2CH --- ',' every third digit
12A0 23 INC HL --- Bump to next position in buffer
12A1 0E03 LD C,03H --- Reset comma counter
12A3 C9 RET --- Rtn to caller
12A4 D5 PUSH DE --- Save edit flags **********************************
12A5 E7 RST 20H --- Test data type
12A6 E2EA12 JP PO,12EAH --- Jump if single precision see note-->
12A9 C5 PUSH BC --- Save leading digit count/comma counter
12AA E5 PUSH HL --- Save buffer addr
12AB CDFC09 CALL 09FCH --- Move WRA1 to WRA2
12AE 217C13 LD HL,137CH --- HL = address of DP .5
12B1 CDF709 CALL 09F7H --- Move to WRA1

156

124F * ***

125E * ***

1269 * Move 'A' ASCII zeroes to a print buffer. Address of buffer

1271 * ***

127D * ***
: Compute the number of digits before the decimal
: point, and the number of commas to be included
: in first part of number. On entry D = size of
: field (6 or 10), E = scale count. On exit B =
: number of digits before dec. pt., C = number of
: commas to include in first part of number.

1291 * ***
1292 : in PBUF Count leading digits before dec. pt.

129C * ***

12A4 * ***

: Convert a DP value to its ASCII equivalent in integer
: portion only

157

12B4 CD770C CALL 0C77H --- Add .5 to value in WRA2. Result to WRA1
12B7 AF XOR A --- Clear status flags
12B8 CD7B0B CALL 0B7BH --- Unpack DP value in WRA1. Save in current area.
12BB E1 POP HL --- Restore buffer addr
12BC C1 POP BC --- and counters
12BD 118C13 LD DE,138CH --- DE=table of powers of 10 from 1.0X10E15 - 1.0X10E6
12C0 3E0A LD A,0AH --- A=no. of times to dvd current val by a power of 10
12C2 CD9112 CALL 1291H <-----: Go add a dec point or a comma to buffer
12C5 C5 PUSH BC -- : Save count of digits before & after dec point
12C6 F5 PUSH AF -- : Save division count
12C7 E5 PUSH HL • : Save current buffer addr
12C8 D5 PUSH DE • : Addr of power table to stack
12C9 062F LD B,2FH • : B = quotient in ASCII for each division
12CB 04 INC B <---: : B start at 30 (ASCII zero)
12CC E1 POP HL • : : HL = addr of power table = divisor
12CD E5 PUSH HL • : : Save it so it can be restored during loop
12CE CD480D CALL 0D48H • : : Dvd current value (integer) by cont-->
12D1 30F8 JR NC,12CBH --->: : Loop till reminder < current power
12D3 E1 POP HL • : Restore starting addr of current power of 10
12D4 CD360D CALL 0D36H • : Add current power to remainder - make it pos
12D7 EB EX DE,HL • : Save current power addr in DE
12D8 E1 POP HL • : HL = current print buffer addr
12D9 70 LD (HL),B • : Digit to buffer
12DA 23 INC HL • : Bump to next print position
12DB F1 POP AF • : Restore status flags so we can test cont-->
12DC C1 POP BC • : Restore counts
12DD 3D DEC A • : Count 1 time thru loop
12DE 20E2 JR NZ,12C2H ----->: Done 10 times , no loop
12E0 C5 PUSH BC --- Restore counts
12E1 E5 PUSH HL --- and current buffer addr
12E2 211D41 LD HL,411DH --- then move last half of DP value
12E5 CDB109 CALL 09B1H --- into WRA1 as a SP value
12E8 180C JR 12F6H --- and convert it to ASCII
12EA C5 PUSH BC --- Convert a SP value to its integer ****** cont--> *
12EB E5 PUSH HL --- Save counts & buffer addr
12EC CD0807 CALL 0708H --- Add a .5 to current value. Result left in BC/DE
12EF 3C INC A --- Bump MSB
12F0 CDFB0A CALL 0AFBH --- Convert a + SP number to integer. Result in BC/DE
12F3 CDB409 CALL 09B4H --- Move SP value in BC/DE to current value. Integer
12F6 E1 POP HL --- portion of original SP value. Restore HL
12F7 C1 POP BC --- Restore buffer addr
12F8 AF XOR A --- Restore counts
12F9 11D213 LD DE,13D2H --- DE = addr of integer equivalent of 100,000
12FC 3F CCF --- CARRY=first time switch for division loop 12FC-
12FD CD9112 CALL 1291H --- Decimal point/commas to numeric buffer :1327
1300 C5 PUSH BC --- Save counts
1301 F5 PUSH AF --- Save CARRY flag for count of times thru loop
1302 E5 PUSH HL --- Save buffer addr
1303 D5 PUSH DE --- Save division table addr
1304 CDBF09 CALL 09BFH --- Load current SP value into BC/DE
1307 E1 POP HL --- HL = addr of integer value of 100,000
1308 062F LD B,2FH --- B = ASCII (30-1) = (0-1
130A 04 INC B --- Gives 30,31,...... which equal ASCII 0,1,2,...
130B 7B LD A,E --- Least Sig byte of integer equivalent
130C 96 SUB (HL) --- Minus least Sig. byte of 100,000
130D 5F LD E,A --- Restore difference for next subtraction
130E 23 INC HL --- Bump to next byte of 100,000
130F 7A LD A,D --- Middle byte of integer equivalent see note-->
1310 9E SBC A,(HL) --- Minus middle byte of 100,000
1311 57 LD D,A --- Restore diff. for next subtraction

158

12CE : a power of 10 starting at 10E15 and working down to 10E6

12DB : for 10 times thru

12EA * equivalent. Divide integer equivalent by 100,000 and *******
: 10,000. Use code at 1335 to convert last 1000 to ASCII

: This code divides the integer portion of the current value
: by 100,000 using compound subtraction. A quotient is kept
: in the B-reg as an ASCII value

159

1312 23 INC HL --- Bump to most sig. byte of 100,000
1313 79 LD A,C --- Most sig. byte of integer equivalent
1314 9E SBC A,(HL) --- Minus most sig. byte of 100,000
1315 4F LD C,A --- Restore for next subtraction
1316 2B DEC HL --- Reset HL to least
1317 2B DEC HL --- Sig byte of 100,000 constant
1318 30F0 JR NC,130AH --- Loop till integer equivalent < 100,000
131A CDB707 CALL 07B7H --- Add 100,000 to value in C/DE, make remainder pos
131D 23 INC HL --- Bump HL to addr of 10,000 constant
131E CDB409 CALL 09B4H --- Save remainder as current value
1321 EB EX DE,HL --- Addr of constant 10,000 to DE
1322 E1 POP HL --- HL = current PBUF addr
1323 70 LD (HL),B --- Save ASCII quotient
1324 23 INC HL --- Bump to next position in print buffer
1325 F1 POP AF --- Restore CARRY flag (switch)
1326 C1 POP BC --- Restore BC so it can be saved later
1327 38D3 JR C,12FCH --- If CARRY set, reset it and divide cont-->
1329 13 INC DE --- When we fall thru we have divided cont-->
132A 13 INC DE --- Bump DE to point to constant 1000
132B 3E04 LD A,04H --- A = no. of digits
132D 1806 JR 1335H --- Go convert remainder to 4 ASCII digits
132F D5 PUSH DE --- Convert integer to ASCII *********** see note--> *
1330 11D813 LD DE,13D8H --- DE = table of descending powers of 10 cont-->
1333 3E05 LD A,05H --- A = no. of ASCII digits to build
1335 CD9112 CALL 1291H --- Add decimal point or commas to buffer
1338 C5 PUSH BC --- Save counts
1339 F5 PUSH AF --- Save number of digits counter
133A E5 PUSH HL --- Save buffer addr
133B EB EX DE,HL --- HL = addr of power table
133C 4E LD C,(HL) --- Load a power of 10 in BC
133D 23 INC HL --- Bump to MSB or power
133E 46 LD B,(HL) --- Load MSB or power
133F C5 PUSH BC --- Save power
1340 23 INC HL --- Bump to next value in power table
1341 E3 EX (SP),HL --- HL=value just loaded, addr of next value to stack
1342 EB EX DE,HL -- DE = value loaded - division
1343 2A2141 LD HL,(4121H) --- HL = current value (integer)
1346 062F LD B,2FH <--: Divide current value by a power of 10 starting at
1348 04 INC B • : 10,000 dec. and working down to 10. Remainder
1349 7D LD A,L • : from each division is added to the division and
134A 93 SUB E • : the sum becomes the dividend for the next
134B 6F LD L,A • : division etc. Division is by compound subtraction
134C 7C LD A,H • : Quotient +2F(hex) = ASCII equivalent of quotient.
134D 9A SBC A,D • : B - reg = quotient.
134E 67 LD H,A • : HL = next dividend
134F 30F7 JR NC,1348H -->: Loop till quotient (HL) less than current power
1351 19 ADD HL,DE --- Remainder + divisor = dividend :of 10
1352 222141 LD (4121H),HL --- Save next dividend
1355 D1 POP DE --- DE = addr of next power of 10
1356 E1 POP HL --- Restore addr of output buffer
1357 70 LD (HL),B --- ASCII digit to buffer
1358 23 INC HL --- Next loc. in print buffer
1359 F1 POP AF --- A = count of digits to convert
135A C1 POP BC --- Restore counter of #'s before & after dec point
135B 3D DEC A --- Have we got 5 digits yet
135C 20D7 JR NZ,1335H --- no, loop
135E CD9112 CALL 1291H --- Decimal point/commas to numeric buffer
1361 77 LD (HL),A --- Zero terminator PBUF
1362 D1 POP DE --- Restore callers DE
1363 C9 RET --- Rtn to caller ************************************

160

1327 : remainder by 10,000
1329 : integer part of SP value by 100,000 and 10,000. The

: remainder is positive and has been saved as current value.

132F * Save edit flags ***
1330 : starting at 10,000 dec.

1363 * ***

161

1364 00 NOP --- 1364 = 10 X 10E9 DP
1365 00 NOP ---
1366 00 NOP ---
1367 00 NOP ---
1368 F9 LD ---
1369 02 LD ---
136A 15 DEC ---
136B A2 AND ---
136C FDFF INDEX --- 136C = 1 X 10E15 DP
136E 9F SBC ---
136F 31A95F LD ---
1372 63 LD ---
1373 B2 OR ---
1374 FEFF CP --- 1374 - 137A = 1 X 10E16 DP
1376 03 INC ---
1377 BF CP ---
1378 C9 RET ---
1379 1B DEC ---
137A 0EB6 LD ---
137C 00 NOP --- 137C - 1383 = .5 (double)
137D 00 NOP ---
137E 00 NOP ---
137F 00 NOP ---
1380 00 NOP --- 1380 - 1383 = .5 (single)
1381 00 NOP ---
1382 00 NOP ---
1383 80 ADD ---
1384 00 NOP --- 1384 - 138B = 1 X 10E16 (double)
1385 00 NOP ---
1386 04 INC ---
1387 BF CP ---
1388 C9 RET ---
1389 1B DEC ---
138A 0EB6 LD --- 138A - 1380 = .502778 (single)
138C 00 NOP --- 138C - 1392 = 1 X 100E15
138D 80 ADD --- (integer portion of DP value
138E C6A4 ADD ---
1390 7E LD ---
1391 8D ADC ---
1392 03 INC ---
1393 00 NOP --- 1393 - 1399 = 1.0 X 10E14
1394 40 LD --- (integer portion of DP value
1395 7A LD ---
1396 10F3 DJNZ ---
1398 5A LD ---
1399 00 NOP ---
139A 00 NOP --- 139A - 13 A0 = 1.0 X 10E13
139B A0 AND --- (integer portion of DP value
139C 72 LD ---
139D 4E LD ---
139E 1809 JR ---
13A0 00 NOP ---
13A1 00 NOP --- 13A1 - 13 A7 = 1.0 X 10E12
13A2 10A5 DJNZ --- (integer portion of DP value
13A4 D4E800 CALL ---
13A7 00 NOP ---
13A8 00 NOP --- 13A8 - 13AE = 1.0 X 10E11
13A9 E8 RET --- (integer portion of DP value
13AA 76 HALT ---
13AB 48 LD ---

162

163

13AC 17 RLA ---
13AD 00 NOP ---
13AE 00 NOP ---
13AF 00 NOP --- 13AF - 13 B5 = 1.0 X 10E10
13B0 E40B54 CALL --- (integer part of DP value)
13B3 02 LD ---
13B4 00 NOP ---
13B5 00 NOP ---
13B6 00 NOP --- 13B6 - 13BC = 1.0 X 10E9
13B7 CA9A3B JP --- (integer part of DP value)
13BA 00 NOP ---
13BB 00 NOP ---
13BC 00 NOP --- 13BD - 13C3 = 1.0 X 10E8
13BD 00 NOP --- (integer part of DP value)
13BE E1 POP ---
13BF F5 PUSH ---
13C0 05 DEC ---
13C1 00 NOP ---
13C2 00 NOP ---
13C3 00 NOP ---
13C4 80 ADD --- 13C4 - 13CA = 1.0 X 10E7
13C5 96 SUB --- (integer part of DP value)
13C6 98 SBC ---
13C7 00 NOP ---
13C8 00 NOP ---
13C9 00 NOP ---
13CA 00 NOP ---
13CB 40 LD --- 13CB - 13D1 = 1,000,000
13CC 42 LD --- (integer part of DP value)
13CD 0F RRCA ---
13CE 00 NOP ---
13CF 00 NOP ---
13D0 00 NOP ---
13D1 00 NOP ---
13D2 A0 AND --- 13D2 = 100,000
13D3 86 ADD ---
13D4 011027 LD --- 13D5 = 10,000
13D7 00 NOP ---
13D8 1027 DJNZ --- 13D8 2710: 10000 decimal ********** see note--> *
13DA E8 RET --- 13DA 03E8: 1000 decimal
13DB 03 INC ---
13DC 64 LD --- 13DC 0064: 100 decimal
13DD 00 NOP ---
13DE 0A LD --- 13DD 000A: 10 decimal
13DF 00 NOP ---
13E0 010021 LD --- 13E1: NOP **
13E3 82 ADD --- 13E2: LD HL,982 Addr of peg to pos cont-->
13E4 09 ADD ---
13E5 E3 EX --- 13E5: EX (SP), HL Addr of conv routine to stack
13E6 E9 JP --- 13E6: JP (HL) Rtn to caller
13E7 CDA409 CALL 09A4H --- Move current SP value to stack********************
13EA 218013 LD HL,1380H --- HL = addr of a SP .5 (exponent)
13ED CDB109 CALL 09B1H --- Load a .5 into BC/DE and move it to WRA1
13F0 1803 JR 13F5H --- Join common code used for X ** Y
13F2 CDB10A CALL 0AB1H --- Convert integer in 4121-4122 to SP & cont-->
13F5 C1 POP BC --- Load value to be raised into
13F6 D1 POP DE --- BC/DE.
13F7 CD5509 CALL 0955H --- Test sign of exponent
13FA 78 LD A,B --- A = MSB of number to be raised
13FB 283C JR Z,1439H --- Jmp if exponent zero

164

13D8 * Integer table of powers of 10 *******************************

13E0 * ***
13E3 : conversion for floating point numbers

13E7 * ********** SQR routine ************************************
* Compute X ** .5 (uses general power routine at 13F2)

: store in 4121-4124 ******** X ** Y Routine ******************
: method used is : e ** (y 1n x)

165

13FD F20414 JP P,1404H --- Jmp if exponent is positive
1400 B7 OR A --- Test value to be raised
1401 CA9A19 JP Z,199AH --- Exit if raising 0 to a neg. power
1404 B7 OR A --- Another test of value to be raised
1405 CA7907 JP Z,0779H --- Raising 0 to a positive power
1408 D5 PUSH DE --- Move value to be raised to stack
1409 C5 PUSH BC --- both parts
140A 79 LD A,C --- A = MSB of value to be raised
140B F67F OR 7FH --- Test sign of base. Set bits 0-6 in case it is
140D CDBF09 CALL 09BFH --- Load exponent (power) into BC/DE :negative
1410 F22114 JP P,1421H --->: Jump if base is positive
1413 D5 PUSH DE -- : Save the exponent on the stack
1414 C5 PUSH BC -- : both parts
1415 CD400B CALL 0B40H -- : Get integer portion of exponent cont-->
1418 C1 POP BC -- : Then restore exponent as a
1419 D1 POP DE -- : SP value in BC/DE
141A F5 PUSH AF -- : Save integer portion of exponent
141B CD0C0A CALL 0A0CH -- : Compare original exp. to truncated cont-->
141E E1 POP HL -- : H = exp (integer)
141F 7C LD A,H -- : A = exp
1420 1F RRA -- : Set carry if exp. is odd
1421 E1 POP HL <---: Load SP version of exp
1422 222341 LD (4123H),HL --- Move to WRA1
1425 E1 POP HL --- Get rest of exponent
1426 222141 LD (4121H),HL --- and move to WRA1
1429 DCE213 CALL C,13E2H --- Call if exponent is odd and base is negative
142C CC8209 CALL Z,0982H --- Call if exponent is integer & base negative
142F D5 PUSH DE --- Save exponent
1430 C5 PUSH BC --- both parts
1431 CD0908 CALL 0809H --- Find log of base value. Gives 'ILLEGAL FUNCTION
1434 C1 POP BC --- Restore exponent : CALL' if negative base raised
1435 D1 POP DE --- Restore exponent : to a power with a fraction
1436 CD4708 CALL 0847H --- Multiply 1n(value) * exponent, then cont-->
1439 CDA409 CALL 09A4H --- Move exponent to stack *** Compute e ** x ********
143C 013881 LD BC,8138H --- BC/DE = 1.4427 (approx In 2 + In 2)
143F 113BAA LD DE,0AA3BH ---
1442 CD4708 CALL 0847H --- Multiply exponent value by 1.4427 (2 In 2)
1445 3A2441 LD A,(4124H) --- A = exponent of product
1448 FE88 CP 88H --- Test exponent to see if more than 8 cont-->
144A D23109 JP NC,0931H --- Jmp if more than 8 bits in integer part of #
144D CD400B CALL 0B40H --- Integer portion has less than 8 bits. Get
1450 C680 ADD A,80H --- integer part & put in A reg
1452 C602 ADD A,02H --- then test it
1454 DA3109 JP C,0931H --- Jmp if exponent * 2 In 2 => 126(dec.)
1457 F5 PUSH AF --- Save integer + 82
1458 21F807 LD HL,07F8H --- Addr. of SP 1.0
145B CD0B07 CALL 070BH --- Add to INT (EXP * 2 In 2)
145E CD4108 CALL 0841H --- Multiply by In 2
1461 F1 POP AF --- Clear stack (integerized EXP * 2 In 2)
1462 C1 POP BC --- then load original
1463 D1 POP DE --- exponent into BC/DE
1464 F5 PUSH AF --- Save integerized EXP * 2 In 2
1465 CD1307 CALL 0713H --- Subtract original exponent from integerized one
1468 CD8209 CALL 0982H --- Force difference to be positive
146B 217914 LD HL,1479H --- Addr of 8 coefficients
146E CDA914 CALL 14A9H --- Compute series
1471 110000 LD DE,0000H --- Load integerized equivalent
1474 C1 POP BC --- of EXP * 2 In 2 into BC/DE
1475 4A LD C,D --- Zero C
1476 C34708 JP 0847H --- Multiply by sum from series & rtn to caller

166

1415 : into A. Truncated flt. pt. portion into WRA1.

141B : exp. This tells if exp. is a whole number

1436 : compute a**1n(value) * exponent
1439 * ***

1448 : bits in integer portion
: Method: 1. Compute x=x * 2 1n 2
: 2. Isolate the integer portion of x. If it is > than
: 88 then exit with an overflow error.
: 3. Using the integer from step 2 compute
: y = (2 ** integer) * 2
: 4. Add 1 to the integer from step 2
: 5. Multiply the result of step 4 by In 2
: 6. Subtract step 5 result from original value of x,
: and invert the sign of result
: 7. Using the value computed in step 7 for x, evaluate
: the series:
: (((((((x*c0+c1)x+c2)x+c3)x+c4)x+c5)x+c6)x+c7)
: 8. Multiply the final term of the series by the value
: computed in step 3

167

1479 08 EX --- Count of numbers in list (08)
147A 40 LD --- 147A = -1.41316 * 10E-4 : coefficients used
147B 2E94 LD --- : in series to compute
147D 74 LD --- : e ** x
147E 70 LD --- 147E = 1.32988 * 10E-3 = 1/6
147F 4F LD ---
1480 2E77 LD ---
1482 6E LD --- 1482 = -8.30136 * 10E-3 = -1/5
1483 02 LD ---
1484 88 ADC ---
1485 7A LD ---
1486 E6A0 AND --- 1486 = .0416574 =1/4
1488 2A7C50 LD ---
148B AA XOR --- 148A = - .166665 =1/3
148C AA XOR ---
148D 7E LD ---
148E FF RST --- 148E = .5
148F FF RST ---
1490 7F LD ---
1491 7F LD ---
1492 00 NOP --- 1492 = -1.0
1493 00 NOP ---
1494 80 ADD ---
1495 81 ADD ---
1496 00 NOP --- 1496 = 1.0
1497 00 NOP ---
1498 00 NOP ---
1499 81 ADD ---
149A CDA409 CALL 09A4H --- Move x value to stack ************** see note--> *
149D 11320C LD DE,0C32H --- Then push a return address of C32 onto the stack
14A0 D5 PUSH DE --- It will compute the last term before returning
14A1 E5 PUSH HL --- Save addr. of no. of term, coefficients
14A2 CDBF09 CALL 09BFH --- Load value into BC/DE
14A5 CD4708 CALL 0847H --- Square x value
14A8 E1 POP HL --- Restore addr of coefficient
14A9 CDA409 CALL 09A4H --- Move x value or x ** 2 value to stack
14AC 7E LD A,(HL) --- A = no. of terms
14AD 23 INC HL --- HL = addr of next coeff.
14AE CDB109 CALL 09B1H --- Load a coeff pointed to HL & move it to cont-->
14B1 06F1 LD B,0F1H --- 14B2: POP AF. Get count of coefficients left
14B3 C1 POP BC --- BC/DE = x value
14B4 D1 POP DE --- Saved at 14A9
14B5 3D DEC A --- Count 1 term computed
14B6 C8 RET Z --- Exit if all terms computed
14B7 D5 PUSH DE --- BC/DE = x value
14B8 C5 PUSH BC --- Save x value on stk so it can be reused
14B9 F5 PUSH AF --- Save count of terms remaining to compute
14BA E5 PUSH HL --- HL pointer to next coeff.
14BB CD4708 CALL 0847H --- Compute: C(I)*x value
14BE E1 POP HL --- Restore coeff. table addr.
14BF CDC209 CALL 09C2H --- Load next coeff. from list in HL into cont-->
14C2 E5 PUSH HL --- Save addr of next coeff.
14C3 CD1607 CALL 0716H --- Compute: C(I) * x value + C(I+1)
14C6 E1 POP HL --- Restore coefficient table addr.
14C7 18E9 JR 14B2H --- Continue series. WRA1 = current term
14C9 CD7F0A CALL 0A7FH --- Convert value to Integer ***** RND routine *******
14CC 7C LD A,H --- A = MSB argument
14CD B7 OR A --- Set status flags
14CE FA4A1E JP M,1E4AH --- FC error if negative if RND(A) where A is negative
14D1 B5 OR L --- Combine MSB & LSB, set status flags

168

149A * *** General purpose summation routine computes the *********
: series SUM ((((x**2 * c0+c1)x**2 +c2)x**2 +...cN)x
: for I=0 to N when entered at 149A. A second entry
: point at 14A9 may be used for the series
: SUM ((((x*c0+c1)x+c2)x+c3)x+...cN
: for I=0 to N. On entry, the x term is in BC/DE.
: HL points to a list containing the number of terms
: followed by the coefficients.

14AE : WRA1. HL points to the next value coefficient

14BF : BC/DE. HL points to next value afterwards

14C9 * ***

169

14D2 CAF014 JP Z,14F0H --- Jmp if parameter is zero i.e. RND(0)
14D5 E5 PUSH HL --- Save parameter (X from RND(X))
14D6 CDF014 CALL 14F0H --- Compute RND(0)
14D9 CDBF09 CALL 09BFH --- Load the random number into BC/DE
14DC EB EX DE,HL --- Now, save the random number on the
14DD E3 EX (SP),HL --- stack, and load the original parameter into HL
14DE C5 PUSH BC --- Save RND (0) value.
14DF CDCF0A CALL 0ACFH --- Convert original parameter to SP
14E2 C1 POP BC --- Load value from RND(0)
14E3 D1 POP DE --- Call at 14D6
14E4 CD4708 CALL 0847H --- Then, multiply RND(0)*parameter
14E7 21F807 LD HL,07F8H --- HL = addr of a SP 1.0
14EA CD0B07 CALL 070BH --- Add 1.0 to current value
14ED C3400B JP 0B40H --- Convert to integer and return to caller
14F0 219040 LD HL,4090H --- HL = addr of 3 byte flag table ******** RND(0) **
14F3 E5 PUSH HL --- Save flag table addr on stack
14F4 110000 LD DE,0000H --- DE = middle and LSB of starting value
14F7 4B LD C,E --- C = MSB of starting value
14F8 2603 LD H,03H --- H = count of times thru outer loop
14FA 2E08 LD L,08H <-------------: L = times thru inner loop
14FC EB EX DE,HL <------: • : Move middle of LSB current cont -->
14FD 29 ADD HL,HL • : • : Double them
14FE EB EX DE,HL • : • : Then move them back
14FF 79 LD A,C • : • : Now, get MSB of current value
1500 17 RLA • : • : Double it
1501 4F LD C,A • : • : And move back to its source reg
1502 E3 EX (SP),HL • : • : Save counters. Get addr of cont -->
1503 7E LD A,(HL) • : • : A = flag word
1504 07 RLCA • : • : Multiply by 2
1505 77 LD (HL),A • : • : And restore
1506 E3 EX (SP),HL • : • : Counters back to HL
1507 D21615 JP NC,1516H --->: : • : Jmp if flag word has not cont -->
150A E5 PUSH HL • : : • : Flag word overflowed. Save counter
150B 2AAA40 LD HL,(40AAH) • : : • : Least two significant bytes of seed
150E 19 ADD HL,DE • : : • : Add seed to starting value
150F EB EX DE,HL • : : • : Move new seed to DE
1510 3AAC40 LD A,(40ACH) • : : • : MSB of seed
1513 89 ADC A,C • : : • : Add to MSB of starting value
1514 4F LD C,A • : : • : MSB starting value back to cont -->
1515 E1 POP HL • : : • : Restore counters
1516 2D DEC L <---: : • : Count of times thru inner loop
1517 C2FC14 JP NZ,14FCH ------>: • : Jmp if not 8 times
151A E3 EX (SP),HL • • : Save counters HL = addr of flag word
151B 23 INC HL • • : Bump to next flag word
151C E3 EX (SP),HL • • : And restore counters. cont -->
151D 25 DEC H • • : Count of times thru outer loop
151E C2FA14 JP NZ,14FAH ------------->: Jmp if not 3 times
1521 E1 POP HL --- Clear flag table addr from stack
1522 2165B0 LD HL,0B065H --- HL = middle and LSB of original seed
1525 19 ADD HL,DE --- Add to current value and save
1526 22AA40 LD (40AAH),HL --- As new seed value
1529 CDEF0A CALL 0AEFH --- Set current data type to single precision
152C 3E05 LD A,05H --- Now, add a 5 to MSB
152E 89 ADC A,C --- Of current value and
152F 32AC40 LD (40ACH),A --- Save as MSB of seed
1532 EB EX DE,HL --- Move middle and LSB to DE so we have BC/DE
1533 0680 LD B,80H --- B = sign flag and exponent :arrangement
1535 212541 LD HL,4125H --- HL = sign flag word
1538 70 LD (HL),B --- Set sign flag positive
1539 2B DEC HL --- Bump down to exponent

170

14F0 * **

: value to HL

: flag word into HL

: overflowed initially

: source register

: New flag word addr to stack.

171

153A 70 LD (HL),B --- Set exponent to 80 so value will be < 1
153B 4F LD C,A --- C = new MSB (computed at 152E)
153C 0600 LD B,00H --- B = 0 : rtn to caller
153E C36507 JP 0765H --- Normalize value & Jmp to 14D9 unless RND(0) then
1541 218B15 LD HL,158BH --- Addr. of 1.57 (pi/2) ************* COS routine ***
1544 CD0B07 CALL 070BH --- Add 1.5 to current value
1547 CDA409 CALL 09A4H --- Save current value on stack ******** SIN routine **
154A 014983 LD BC,8349H --- BC/DE = SP = 6.28 (2 pi)
154D 11DB0F LD DE,0FDBH ---
1550 CDB409 CALL 09B4H --- Move 2 pi to WRA1
1553 C1 POP BC --- Load value to
1554 D1 POP DE --- find SIN of into BC/DE
1555 CDA208 CALL 08A2H --- Value / 2 Pi gives x/360
1558 CDA409 CALL 09A4H --- Move value / 2 Pi to stack
155B CD400B CALL 0B40H --- Convert result to integer so we can isolate
155E C1 POP BC --- BC/DE = quotient & remainder of :remainder
155F D1 POP DE --- value / 2 pi
1560 CD1307 CALL 0713H --- Subtract integer part of value from cont-->
1563 218F15 LD HL,158FH --- Addr of a SP (.250)
1566 CD1007 CALL 0710H --- Subtract .250 from fractional part. Test if < or =
1569 CD5509 CALL 0955H --- Test sign of the difference : to 90 deg
156C 37 SCF --- Skip sign inversion call at 1582 if positive
156D F27715 JP P,1577H --- Jmp if < than 90 deg. Go add back the .250
1570 CD0807 CALL 0708H --- Add 0.5 to difference : subtracted
1573 CD5509 CALL 0955H --- Test sign of current value. See if > 0.75
1576 B7 OR A --- Set status flags : (< 270 deg)
1577 F5 PUSH AF --- And save sign indicator (+ = +1, - = -1)
1578 F48209 CALL P,0982H --- If positive, make it negative (gives x - 1.0)
157B 218F15 LD HL,158FH --- Addr of SP (.250)
157E CD0B07 CALL 070BH --- Add 0.250 to current value in WRA1
1581 F1 POP AF --- Get sign reversal flag
1582 D48209 CALL NC,0982H --- Set sign of x term according to quadrant
1585 219315 LD HL,1593H --- Addr of coefficient
1588 C39A14 JP 149AH --- Compute series and rtn to caller
158B DB0F IN --- 158B = SP (1.5) **********************************
158D 49 LD ---
158E 81 ADD ---
158F 00 NOP --- 158F - 1592 = .25
1590 00 NOP ---
1591 00 NOP ---
1592 7F LD ---
1593 05 DEC --- 1593: count of values that follow (05)
1594 BA CP --- 1594 - 1597 = SP (39.7107) : Coefficients used
1595 D7 RST --- : in power series
1596 1E86 LD --- : to compute SIN
1598 64 LD --- 1598 - 159B = SP (-76.575)
1599 2699 LD ---
159B 87 ADD ---
159C 58 LD --- 159C - 159F = SP (81.6022)
159D 34 INC ---
159E 23 INC ---
159F 87 ADD ---
15A0 E0 RET --- 15A0 - 15A3 = SP (-41.3417)
15A1 5D LD ---
15A2 A5 AND ---
15A3 86 ADD ---
15A4 DA0F49 JP --- 15A4 - 15A7 = SP (6.28319)
15A7 83 ADD ---
15A8 CDA409 CALL 09A4H --- Move WRA1 to stack ********* TAN routine *********
15AB CD4715 CALL 1547H --- Compute SIN(x) see note-->

172

1541 * ***

1547 * ***
* Method: 1. Assume x < or = 360 deg
* 2. Re-compute x as x = x/360 so that x =< 1
* 3. If x < or = 90 deg goto step 7
* 4. If x < or = 180 deg then x = 0.5 - x. Goto step 7
* 5. If x < or = 270 deg then x = 0.5 - x
* 6. Re-compute x as x = x - 1.0
* 7. Compute SIN using power series

1560 : original value (isolate fractional part of x)

158B * **

15A8 * **
: Uses the identity TAN(x) = sink) / cos(x)

173

15AE C1 POP BC --- Restore the original value
15AF E1 POP HL --- to BC / DE
15B0 CDA409 CALL 09A4H --- Move SIN(x)to stack
15B3 EB EX DE,HL --- Gives original value in BC/DE
15B4 CDB409 CALL 09B4H --- Original value to WRA1
15B7 CD4115 CALL 1541H --- Compute COS(x)
15BA C3A008 JP 08A0H --- Compute SIN(x)/COS(x) & rtn value as TAN(x)
15BD CD5509 CALL 0955H --- Test sign of tangent ********** AIN Routine *****
15C0 FCE213 CALL M,13E2H --- If neg. put pos. to neg, conv. addr cont--->
15C3 FC8209 CALL M,0982H --- Convert current value from neg to pos
15C6 3A2441 LD A,(4124H) --- Load exponent of tangent
15C9 FE81 CP 81H --- Test for value greater than one
15CB 380C JR C,15D9H --->: Jmp if value less than 1
15CD 010081 LD BC,8100H • : Setup BC/DE as a
15D0 51 LD D,C • : floating point + 1
15D1 59 LD E,C • : to BC / DE
15D2 CDA208 CALL 08A2H • : Get reciprocal of tangent
15D5 211007 LD HL,0710H • : Addr of subtract routine be called after series
15D8 E5 PUSH HL • : Will subtract last term from Pi/2
15D9 21E315 LD HL,15E3H <---: HL = addr of SP coefficients
15DC CD9A14 CALL 149AH --- Evaluate series
15DF 218B15 LD HL,158BH --- Addr of 1.5708 (Pi/2) : step 2
15E2 C9 RET --- Subtract last term from Pi/2 & rtn. On rtn see
15E3 09 ADD --- 15E3 = count of SP numbers that follow (09) ******
15E4 4A LD --- 15E4 = 2.86623 * 10E-3
15E5 D7 RST --- : Coefficients used in
15E6 3B DEC --- : power series for ATN
15E7 78 LD ---
15E8 02 LD --- 15E8 = - .0161657
15E9 6E LD ---
15EA 84 ADD ---
15EB 7B LD ---
15EC FEC1 CP --- 15EC = .0429096
15EE 2F CPL ---
15EF 7C LD ---
15F0 74 LD ---
15F1 319A7D LD --- 15F0 = - .0752896
15F4 84 ADD ---
15F5 3D DEC --- 15F4 = .105586
15F6 5A LD ---
15F7 7D LD ---
15F8 C8 RET ---
15F9 7F LD --- 15F8 = - .142089
15FA 91 SUB ---
15FB 7E LD ---
15FC E4BB4C CALL ---
15FF 7E LD --- 15FC = .199936
1600 6C LD ---
1601 AA XOR --- 1600 = - .333331
1602 AA XOR ---
1603 7F LD ---
1604 00 NOP ---
1605 00 NOP --- 1604 = 1.0000
1606 00 NOP ---
1607 81 ADD ---
1608 8A ADC ---
1609 09 ADD --- ************************************ see note--> *
160A 37 SCF ---
160B 0B DEC --- INT 0B37
160C 77 LD --- ABS 0977

174

15BD * **
15C0 : on stack to give proper result

: Method: 1. Test sign of tangent, if negative angle is in 2nd
: or 4th quadrant. Set flag to force result positive
: on exit. If value is negative invert the sign
: 2. Test magnitude of tangent. If < 1 goto step 3,
: otherwise compute its reciprocal and put rtn addr
: on stack that will calculate Pi/2 - series value
: 3. Evaluate the series
: (((x**2 *c0+c1)x**2 +c2)...c8)x
: 4. If flag from step 1 not set then invert sign of
: series result.
: 5. If original value <1 then rtn to caller, or else
: compute Pi/2 - value from step 4 - then rtn

15E3 * **

1608 * Address of embedded functions *******************************

175

160D 09 ADD ---
160E D427EF CALL --- 160E: FRE (27D4)
1611 2AF527 LD --- 1611:1613 INP (2AEF), POS (27F5)
1614 E7 RST --- 1614: SQR (13E7)
1615 13 INC ---
1616 C9 RET --- 1616: RND (14C9)
1617 14 INC ---
1618 09 ADD --- 1618: LOG (0809)
1619 08 EX ---
161A 39 ADD --- 161A: EXP (1439)
161B 14 INC ---
161C 41 LD --- 161C: COS (1541)
161D 15 DEC ---
161E 47 LD --- 161E: SIN (1547)
161F 15 DEC ---
1620 A8 XOR --- 1620: TAN (15A8)
1621 15 DEC ---
1622 BD CP --- 1622: ATN (15BD)
1623 15 DEC ---
1624 AA XOR --- 1624: PEEK (2CAA)
1625 2C INC ---
1626 52 LD --- 1626: CVI (4152)
1627 41 LD ---
1628 58 LD --- 1628: CVS (4158)
1629 41 LD ---
162A 5E LD --- 162A: CVD (415E)
162B 41 LD ---
162C 61 LD --- 162C: EOF (4161)
162D 41 LD ---
162E 64 LD --- 162E: LOC (4164)
162F 41 LD ---
1630 67 LD --- 1630: LOF (4167)
1631 41 LD ---
1632 6A LD --- 1632: MKI$ (416A)
1633 41 LD ---
1634 6D LD --- 1634: MKS$ (416D)
1635 41 LD ---
1636 70 LD --- 1636: MKD$ (4170)
1637 41 LD ---
1638 7F LD --- 1638: CINT (0A7F)
1639 0A LD ---
163A B1 OR --- 163A: CSNG (0AB1)
163B 0A LD ---
163C DB0A IN --- 163C: CDBL (0DAB)
163E 260B LD --- 163E: FIX (0B26)
1640 03 INC --- 1640:1642 LEN (2A03), STR$(2836)
1641 2A3628 LD ---
1644 C5 PUSH --- 1644:1646 VAL (2AC5), ASC(2A0F)
1645 2A0F2A LD ---
1648 1F RRA --- 1648:164A CHR$(2A1F), LEFT$(2A61)
1649 2A612A LD ---
164C 91 SUB --- 164C:164F RIGHT$ (2A91), MID$(2A9A)
164D 2A9A2A LD ---
1650 C5 PUSH --- 80 END *****************************
1651 4E LD ---
1652 44 LD ---
1653 C64F ADD --- 81 FOR
1655 52 LD ---
1656 D24553 JP --- 82 RESET
1659 45 LD ---

176

1650 * Reserved word list **

177

165A 54 LD --- Token Word *** Reserved word list ***
165B D345 OUT --- 83 SET
165D 54 LD ---
165E C34C53 JP --- 84 CLS
1661 C34D44 JP --- 85 CMD
1664 D2414E JP --- 86 RANDOM
1667 44 LD ---
1668 4F LD ---
1669 4D LD ---
166A CE45 ADC --- 87 NEXT
166C 58 LD ---
166D 54 LD ---
166E C44154 CALL --- 88 DATA
1671 41 LD ---
1672 C9 RET --- 89 INPUT
1673 4E LD ---
1674 50 LD ---
1675 55 LD ---
1676 54 LD ---
1677 C4494D CALL --- 8A DIM
167A D24541 JP --- 8B READ
167D 44 LD ---
167E CC4554 CALL --- 8C LET
1681 C7 RST --- 8D GOTO
1682 4F LD ---
1683 54 LD ---
1684 4F LD ---
1685 D2554E JP --- 8E RUN
1688 C9 RET --- 8F IF
1689 46 LD ---
168A D24553 JP --- 90 RESTORE
168D 54 LD ---
168E 4F LD ---
168F 52 LD ---
1690 45 LD ---
1691 C7 RST --- 91 GOSUB
1692 4F LD ---
1693 53 LD ---
1694 55 LD ---
1695 42 LD ---
1696 D24554 JP --- 92 RETURN
1699 55 LD ---
169A 52 LD ---
169B 4E LD ---
169C D2454D JP --- 93 REM
169F D354 OUT --- 94 STOP
16A1 4F LD ---
16A2 50 LD ---
16A3 C5 PUSH --- 95 ELSE
16A4 4C LD ---
16A5 53 LD ---
16A6 45 LD ---
16A7 D4524F CALL --- 96 TRON
16AA 4E LD ---
16AB D4524F CALL --- 97 TROFF
16AE 46 LD ---
16AF 46 LD ---
16B0 C44546 CALL --- 98 DEFSTR
16B3 53 LD ---
16B4 54 LD ---

178

179

16B5 52 LD --- Token Word *** Reserved word list cont
16B6 C44546 CALL --- 99 DEFINT
16B9 49 LD ---
16BA 4E LD ---
16BB 54 LD ---
16BC C44546 CALL --- 9A DEFSNG
16BF 53 LD ---
16C0 4E LD ---
16C1 47 LD ---
16C2 C44546 CALL --- 9B DEFDBL
16C5 44 LD ---
16C6 42 LD ---
16C7 4C LD ---
16C8 CC494E CALL --- 9C LINE
16CB 45 LD ---
16CC C5 PUSH --- 9D EDIT
16CD 44 LD ---
16CE 49 LD ---
16CF 54 LD ---
16D0 C5 PUSH --- 9E ERROR
16D1 52 LD ---
16D2 52 LD ---
16D3 4F LD ---
16D4 52 LD ---
16D5 D24553 JP --- 9F RESUME
16D8 55 LD ---
16D9 4D LD ---
16DA 45 LD ---
16DB CF RST --- A0 OUT
16DC 55 LD ---
16DD 54 LD ---
16DE CF RST --- A1 ON
16DF 4E LD ---
16E0 CF RST --- A2 OPEN
16E1 50 LD ---
16E2 45 LD ---
16E3 4E LD ---
16E4 C649 ADD --- A3 FIELD
16E6 45 LD ---
16E7 4C LD ---
16E8 44 LD ---
16E9 C7 RST --- A4 GET
16EA 45 LD ---
16EB 54 LD ---
16EC D0 RET --- A5 PUT
16ED 55 LD ---
16EE 54 LD ---
16EF C34C4F JP --- A6 CLOSE
16F2 53 LD ---
16F3 45 LD ---
16F4 CC4F41 CALL --- A7 LOAD
16F7 44 LD ---
16F8 CD4552 CALL --- A8 MERGE
16FB 47 LD ---
16FC 45 LD ---
16FD CE41 ADC --- A9 NAME
16FF 4D LD ---
1700 45 LD ---
1701 CB49 BIT --- AA KILL
1703 4C LD ---

180

181

1704 4C LD --- Token Word *** Reserved word list cont
1705 CC5345 CALL --- AB LSET
1708 54 LD ---
1709 D25345 JP --- AC RSET
170C 54 LD ---
170D D341 OUT --- AD SAVE
170F 56 LD ---
1710 45 LD ---
1711 D359 OUT --- AE SYSTEM
1713 53 LD ---
1714 54 LD ---
1715 45 LD ---
1716 4D LD ---
1717 CC5052 CALL --- AF LPRINT
171A 49 LD ---
171B 4E LD ---
171C 54 LD ---
171D C44546 CALL --- B0 DEF
1720 D0 RET --- B1 POKE
1721 4F LD ---
1722 4B LD ---
1723 45 LD ---
1724 D0 RET --- B2 PRINT
1725 52 LD ---
1726 49 LD ---
1727 4E LD ---
1728 54 LD ---
1729 C34F4E JP --- B3 CONT
172C 54 LD ---
172D CC4953 CALL --- B4 LIST
1730 54 LD ---
1731 CC4C49 CALL --- B5 LLIST
1734 53 LD ---
1735 54 LD ---
1736 C4454C CALL --- B6 DELETE
1739 45 LD ---
173A 54 LD ---
173B 45 LD ---
173C C1 POP --- B7 AUTO
173D 55 LD ---
173E 54 LD ---
173F 4F LD ---
1740 C34C45 JP --- B8 CLEAR
1743 41 LD ---
1744 52 LD ---
1745 C34C4F JP --- B9 CLOAD
1748 41 LD ---
1749 44 LD ---
174A C35341 JP --- BA CSAVE
174D 56 LD ---
174E 45 LD ---
174F CE45 ADC --- BB NEW
1751 57 LD ---
1752 D44142 CALL --- BC TAB(
1755 28D4 JR --- BD TO
1757 4F LD ---
1758 C64E ADD --- BE FN
175A D5 PUSH --- BF USING
175B 53 LD ---
175C 49 LD ---

182

183

175D 4E LD --- Token Word *** Reserved word list cont
175E 47 LD ---
175F D641 SUB --- C0 VARPTR
1761 52 LD ---
1762 50 LD ---
1763 54 LD ---
1764 52 LD ---
1765 D5 PUSH --- C1 USR
1766 53 LD ---
1767 52 LD ---
1768 C5 PUSH --- C2 ERL
1769 52 LD ---
176A 4C LD ---
176B C5 PUSH --- C3 ERR
176C 52 LD ---
176D 52 LD ---
176E D354 OUT --- C4 STRING$
1770 52 LD ---
1771 49 LD ---
1772 4E LD ---
1773 47 LD ---
1774 24 INC ---
1775 C9 RET --- C5 INSTR
1776 4E LD ---
1777 53 LD ---
1778 54 LD ---
1779 52 LD ---
177A D0 RET --- C6 POINT
177B 4F LD ---
177C 49 LD ---
177D 4E LD ---
177E 54 LD ---
177F D4494D CALL --- C7 TIME$
1782 45 LD ---
1783 24 INC ---
1784 CD454D CALL --- C8 MEM
1787 C9 RET --- C9 INKEY$
1788 4E LD ---
1789 4B LD ---
178A 45 LD ---
178B 59 LD ---
178C 24 INC ---
178D D44845 CALL --- CA THEN
1790 4E LD ---
1791 CE4F ADC --- CB NOT
1793 54 LD ---
1794 D354 OUT --- CC STEP
1796 45 LD ---
1797 50 LD ---
1798 AB XOR --- D +
1799 AD XOR --- CE -
179A AA XOR --- CF *
179B AF XOR --- D0 /
179C DBC1 IN --- D1 up arrow
179E 4E LD ---
179F 44 LD ---
17A0 CF RST --- D2 AND
17A1 52 LD --- D3 OR
17A2 BE CP --- D4 >
17A3 BD CP --- D5 =

184

185

17A4 BC CP --- D6 <
17A5 D347 OUT --- D7 SGN
17A7 4E LD --- Token Word *** Reserved word list cont
17A8 C9 RET --- D8 INT
17A9 4E LD ---
17AA 54 LD ---
17AB C1 POP --- D9 ABS
17AC 42 LD ---
17AD 53 LD ---
17AE C652 ADD --- DA FRE (String)
17B0 45 LD ---
17B1 C9 RET --- DB INP
17B2 4E LD ---
17B3 50 LD ---
17B4 D0 RET --- DC POS
17B5 4F LD ---
17B6 53 LD ---
17B7 D351 OUT --- DD SQR
17B9 52 LD ---
17BA D24E44 JP --- DE RND
17BD CC4F47 CALL --- DF LOG
17C0 C5 PUSH --- E0 EXP
17C1 58 LD ---
17C2 50 LD ---
17C3 C34F53 JP --- E1 COS
17C6 D349 OUT --- E2 SIN
17C8 4E LD ---
17C9 D4414E CALL --- E3 TAN
17CC C1 POP --- E4 ATN
17CD 54 LD ---
17CE 4E LD ---
17CF D0 RET --- E5 PEEK
17D0 45 LD ---
17D1 45 LD ---
17D2 4B LD ---
17D3 C35649 JP --- E6 CVI
17D6 C35653 JP --- E7 CVS
17D9 C35644 JP --- E8 CVD
17DC C5 PUSH --- E9 EOF
17DD 4F LD ---
17DE 46 LD ---
17DF CC4F43 CALL --- EA LOC
17E2 CC4F46 CALL --- EB LOF
17E5 CD4B49 CALL --- EC MKI$
17E8 24 INC ---
17E9 CD4B53 CALL --- ED MKS$
17EC 24 INC ---
17ED CD4B44 CALL --- EE MKD$
17F0 24 INC ---
17F1 C3494E JP --- EF CINT
17F4 54 LD ---
17F5 C3534E JP --- F0 CSNG
17F8 47 LD ---
17F9 C34442 JP --- F1 CDBL
17FC 4C LD ---
17FD C649 ADD --- F2 FIX
17FF 58 LD ---
1800 CC454E CALL --- F3 LEN
1803 D354 OUT --- F4 STR$(Exp)
1805 52 LD ---

186

187

1806 24 INC --- Token Word *** Reserved word list cont
1807 D641 SUB --- F5 VAL (string)
1809 4C LD ---
180A C1 POP --- F6 ASC (string)
180B 53 LD ---
180C 43 LD ---
180D C34852 JP --- F7 CHR$ (exp)
1810 24 INC ---
1811 CC4546 CALL --- F8 LEFT$ (string, n)
1814 54 LD ---
1815 24 INC ---
1816 D24947 JP --- F9 RIGHT$ (string, n)
1819 48 LD ---
181A 54 LD ---
181B 24 INC ---
181C CD4944 CALL --- FA MID$ (string, pos, n)
181F 24 INC ---
1820 A7 AND --- FB '
1821 80 ADD --- End of syntax list ***--Addr verb ****************
1822 AE XOR --- 1822: 1DAE - END *********************************
1823 1D DEC ---
1824 A1 AND --- 1824: 1CA1 - FOR
1825 1C INC ---
1826 3801 JR --- 1826: 0138 - RESET
1828 35 DEC --- 1828: 0135 - SET
1829 01C901 LD --- 182A: 01C9 - CLS
182C 73 LD --- 182C: 4173 - CMD
182D 41 LD ---
182E D301 OUT --- 182E: 01DC - RANDOM
1830 B6 OR --- 1830: 22B6 - NEXT
1831 22051F LD --- 1832: 1F05 - DATA
1834 9A SBC --- 1834: 219A - INPUT
1835 210826 LD --- 1836: 2608 - DIM
1838 EF RST --- 1838: 21EF - READ
1839 21211F LD --- 183A: 1F21 - LET
183C C21EA3 JP --- 183C - 183E: (1EC2 - GOTO, 1EA3 - RUN)
183F 1E39 LD --- 1840: 2039 - IF
1841 2091 JR --- 1842: 1D91 - RESTORE
1843 1D DEC ---
1844 B1 OR --- 1844: 1EB1 - GOSUB
1845 1EDE LD --- 1846: 1EDE - RETURN
1847 1E07 LD --- 1848: 1F07 - REM
1849 1F RRA ---
184A A9 XOR --- 184A: 1DA9 - STOP
184B 1D DEC --
184C 07 RLCA --- 184C: 1F07 - ELSE
184D 1F RRA ---
184E F7 RST --- 184E: 1DF7 - TRON
184F 1D DEC ---
1850 F8 RET --- 1850: 1DF8 - TROFF
1851 1D DEC ---
1852 00 NOP --- 1852: 1E00 - DEFSTR
1853 1E03 LD --- 1854: 1E03 - DEFINT
1855 1E06 LD --- 1856: 1E06 - DEFSNG
1857 1E09 LD --- 1858: 1E09 - DEFDBL
1859 1EA3 LD --- 185A: 41A3 - LINE
185B 41 LD ---
185C 60 LD --- 185C: 2E60 - EDIT
185D 2EF4 LD --- 185E: 1FF4 - ERROR
185F 1F RRA ---

188

1821 * ***
1822 * Routine vector addresses 2 bytes each ***********************

189

1860 AF XOR ---
1861 1F RRA --- 1860: 1FAF - RESUME
1862 FB EI ---
1863 2A6C1F LD --- 1862: 26FB - OUT
1866 79 LD --- 1864: 1F6C - ON
1867 41 LD --- 1866: 4179 - OPEN
1868 7C LD ---
1869 41 LD --- 1868: 417C - FIELD
186A 7F LD ---
186B 41 LD --- 186A: 417E - GET
186C 82 ADD ---
186D 41 LD --- 186C: 4182 - PUT
186E 85 ADD ---
186F 41 LD --- 186E: 4185 - CLOSE
1870 88 ADC ---
1871 41 LD --- 1870: 4188 - LOAD
1872 8B ADC ---
1873 41 LD --- 1872: 418B - MERGE
1874 8E ADC ---
1875 41 LD --- 1874: 418E - NAME
1876 91 SUB ---
1877 41 LD --- 1876: 4191 - KILL
1878 97 SUB ---
1879 41 LD --- 1878: 4197 - LSET
187A 9A SBC ---
187B 41 LD --- 187A: 419A - RSET
187C A0 AND ---
187D 41 LD --- 187C: 41A0 - SAVE
187E B2 OR ---
187F 02 LD --- 187E: 02B2 - SYSTEM
1880 67 LD ---
1881 205B JR --- 1880: 2067 - LPRINT
1883 41 LD --- 1882: 415B - CEF
1884 B1 OR ---
1885 2C INC --- 1884: 2CB1 - POKE
1886 6F LD ---
1887 20E4 JR --- 1886: 206E - PRINT
1889 1D DEC --- 1888: 1DE4 - CONT
188A 2E2B LD ---
188C 29 ADD --- 188A: 2B2E - LIST
188D 2B DEC --- 188C: 2B29 - LLIST
188E C62B ADD ---
1890 08 EX --- 188E: 2BC6 - DELETE
1891 207A JR --- 1890: 2008 - AUTO
1893 1E1F LD --- 1892: 1E7A - CLEAR
1895 2C INC --- 1894: 2C1F - CLOAD
1896 F5 PUSH ---
1897 2B DEC --- 1896: 2BF5 - CSAVE
1898 49 LD ---
1899 1B DEC --- 1898: 1B49 - NEW
189A 79 LD ---
189B 79 LD --- + ********************* Precedent operators *****
189C 7C LD --- -
189D 7C LD --- *
189E 7F LD --- /
189F 50 LD --- up arrow
18A0 46 LD --- AND
18A1 DB0A IN --- OR
18A3 00 NOP --- 18A1: 0ADB - convert to double precision *********
18A4 00 NOP --- 18A3: 0000 - This location not used

190

189A * ***

18A1 * Used by arithmetic routines to do data conversion & *********
: arithmetic.

191

18A5 7F LD --- 18A5: 0AF7 - Convert to Integer
18A6 0A LD ---
18A7 F40AB1 CALL --- 18A7: 0AF4 - Test data type. TM error if not string
18AA 0A LD --- 18A9: 0AB1 - Convert to single precision
18AB 77 LD --- 18AB: 0C77 - Double precision add routine
18AC 0C INC ---
18AD 70 LD --- 18AD: 0C70 - Double precision subtract routine
18AE 0C INC ---
18AF A1 AND --- 18AF: 0DA1 - Double precision multiply routine
18B0 0D DEC ---
18B1 E5 PUSH --- 18B1: 0DE5 - Double precision divide routine
18B2 0D DEC ---
18B3 78 LD --- 18B3: 0A78 - Double precision exponential routine
18B4 0A LD ---
18B5 1607 LD --- 18B5: 0716 - Single precision add routine
18B7 13 INC --- 18B7: 0713 - Single precision subtract routine
18B8 07 RLCA ---
18B9 47 LD --- 18B9: 0847 - Single precision multiply routine
18BA 08 EX ---
18BB A2 AND --- 18BB: 08A2 - Single precision divide routine
18BC 08 EX ---
18BD 0C INC --- 18BD: 0A0C - Single precision exponential routine
18BE 0A LD --- 18BF-18C1: 0BD2/0BC2 Integer add/subtract routines
18BF D20BC7 JP ---
18C2 0B DEC --- 18C3-18C5: 0BF2/2490 Int multiply/divide routines
18C3 F20B90 JP ---
18C6 24 INC --- 18C7: 0A39 - Integer exponential routine
18C7 39 ADD ---
18C8 0A LD ---
18C9 4E LD --- 0 - NF (NEXT without FOR) ** Error codes *******
18CA 46 LD ---
18CB 53 LD --- 2 - SN (Syntax error)
18CC 4E LD ---
18CD 52 LD --- 4 - RG (RETURN without GOSUB)
18CE 47 LD ---
18CF 4F LD --- 6 - OD (Out of DATA)
18D0 44 LD ---
18D1 46 LD --- 8 - FC (Illegal function call)
18D2 43 LD ---
18D3 4F LD --- 10 - OV (Overflow)
18D4 56 LD ---
18D5 4F LD --- 12 - OM (Out of memory)
18D6 4D LD ---
18D7 55 LD --- 14 - UL (Undefined linenumber)
18D8 4C LD ---
18D9 42 LD --- 16 - BS (Subscript out of range)
18DA 53 LD ---
18DB 44 LD --- 18 - DD (Redimensioned array)
18DC 44 LD ---
18DD 2F CPL --- 20 - /0 (Division by zero)
18DE 3049 JR --- 22 - ID (Illegal direct operation)
18E0 44 LD ---
18E1 54 LD --- 24 - TM (Type mismatch)
18E2 4D LD ---
18E3 4F LD --- 26 - OS (Out of string space)
18E4 53 LD ---
18E5 4C LD --- 28 - LS (String too long)
18E6 53 LD ---
18E7 53 LD --- 30 - ST (String formula too complex)
18E8 54 LD ---

192

18C9 * ***

193

18E9 43 LD --- 32 - CN (Can't continue)
18EA 4E LD ---
18EB 4E LD --- 34 - NR (No RESUME)
18EC 52 LD ---
18ED 52 LD --- 36 - RW (RESUME without error)
18EE 57 LD ---
18EF 55 LD --- 38 - UE (Unprintable error)
18F0 45 LD ---
18F1 4D LD --- 40 - MO (Missing operand)
18F2 4F LD ---
18F3 46 LD --- 42 - FD (Bad file data)
18F4 44 LD ---
18F5 4C LD --- 44 - L3 (Disk BASIC command)
18F6 33 INC ---
18F7 D600 SUB 00H --- Subtract LSB * Division Support routine * note-> *
18F9 6F LD L,A --- and restore value to L
18FA 7C LD A,H --- Get middle byte
18FB DE00 SBC A,00H --- Subtract middle byte
18FD 67 LD H,A --- and move difference to H
18FE 78 LD A,B --- Get MSB
18FF DE00 SBC A,00H --- Subtract MSB
1901 47 LD B,A --- and move it back
1902 3E00 LD A,00H --- Clear A
1904 C9 RET --- Rtn to caller
1905 4A LD --- 408E : Addr of user subroutine
1906 1E40 LD ---
1908 E64D AND --- 4090 : 3 byte table used by RND to keep track
190A DB00 IN A,(00H) --- 4093 : Used for INP (XX) : of previous RND
190C C9 RET --- 4093 : RET : value
190D D300 OUT (00H),A --- 4096 : Used for OUTP (XX)
190F C9 RET --- 4098 : RET
1910 00 NOP --- 4099 : 00
1911 00 NOP --- 409A : 00
1912 00 NOP --- 409B : 00
1913 00 NOP --- 409C : 00
1914 40 LD --- 409D : 40
1915 3000 JR --- 40A0 : Contains initial stack addr used
1917 4C LD --- (434C) : for non-disk IPL
1918 43 LD --- 40A2 : Initial BASIC line number (FFFE)
1919 FEFF CP ---
191B E9 JP --- 40A4 : Initial addr for PST (42E9)
191C 42 LD ---
191D 2045 JR --- Space, E ******************** ERROR Message ******
191F 72 LD --- R
1920 72 LD --- R
1921 6F LD --- 0
1922 72 LD --- R
1923 00 NOP --- Terminator
1924 2069 JR --- Space, I ********************* IN Message ********
1926 6E LD --- N
1927 2000 JR --- Space, 0 - terminator
1929 52 LD --- Space, R ********************* READY Message *****
192A 45 LD --- E
192B 41 LD --- A
192C 44 LD --- D
192D 59 LD --- Y
192E 0D DEC --- Carriage ret
192F 00 NOP --- Terminator
1930 42 LD --- B ***************************** BREAK Message ****
1931 72 LD --- R

194

18F7 * Code from 18F7 to 191D is moved *****************************
: to locations 4080 - 40A5 during
: the non-disk IPL sequence. This
: section of code contains the
: division support routine
: used for single precision
: division, and initial values
: for the communications region
: locations 408E - 40A4

191D * ***

1924 * ***

1929 * ***

1930 * ***

195

1932 65 LD --- E
1933 61 LD --- A
1934 6B LD --- K
1935 00 NOP --- Message terminator
1936 210400 LD HL,0004H --- HL = 4 so we can backspace ********* see note--> *
1939 39 ADD HL,SP -- Current stack pointer 4 bytes
193A 7E LD A,(HL) <---: A = current stack ptr (-4)
193B 23 INC HL • : Backspace one more byte in case FOR token
193C FE81 CP 81H • : Does current stack ptr(-4) = FOR token :located
193E C0 RET NZ • : No, exit with A non-zero if no FOR push
193F 4E LD C,(HL) • : C = LSB addr of index variable
1940 23 INC HL • : Backspace current stack ptr one more byte
1941 46 LD B,(HL) • : B = MSB addr of index variable
1942 23 INC HL • : HL = addr of FOR index on stack
1943 E5 PUSH HL • : Save addr of FOR index pointer on stack
1944 69 LD L,C • : L = LSB of index addr
1945 60 LD H,B • : H = MSB of index addr see note-->
1946 7A LD A,D • : Test user specified variable addr
1947 B3 OR E • : Set status flags
1948 EB EX DE,HL • : DE = addr of index from stack
1949 2802 JR Z,194DH • : Jmp, if user specified addr of zero
194B EB EX DE,HL • : HL = addr of index from stack
194C DF RST 18H • : Compare caller's DE to addr of cont-->
194D 010E00 LD BC,000EH • : Amt to backspace to next FOR token
1950 E1 POP HL • : HL = stack addr of sign of increment flag
1951 C8 RET Z • : Exit if FOR index = NEXT index
1952 09 ADD HL,BC • : Else, backspace to next possible FOR push
1953 18E5 JR 193AH --->: Keep looking
1955 CD6C19 CALL 196CH --- Make sure there's room in ********** see note--> *
1958 C5 PUSH BC --- Source addr (end of list) to stack
1959 E3 EX (SP),HL --- Source addr (end of list) to HL
195A C1 POP BC --- BC = destination addr (end)
195B DF RST 18H <---: Test for end of move
195C 7E LD A,(HL) • : Fetch a byte from source list
195D 02 LD (BC),A • : Store in destination list
195E C8 RET Z • : Exit if list moved
195F 0B DEC BC • : Decrement source address
1960 2B DEC HL • : Decrement destination address
1961 18F8 JR 195BH --->: Loop until list moved
1963 E5 PUSH HL --- Save code string addr ************** see note--> *
1964 2AFD40 LD HL,(40FDH) --- Start of free memory ptr.
1967 0600 LD B,00H --- B=00, C=no. of double bytes needed
1969 09 ADD HL,BC --- Add 2*no. of bytes required to start of free area
196A 09 ADD HL,BC --- HL = end free area
196B 3EE5 LD A,0E5H --- 196C: PUSH HL, save new free area ptr (starting)
196D 3EC6 LD A,0C6H --- Now, compute amt. of memory between
196F 95 SUB L --- FFC6 (65478) start of the stack and new starting
1970 6F LD L,A --- Free memory pointer by subtracting new starting
1971 3EFF LD A,0FFH --- Free mem. addr from FFC6. If free mem. overflows
1973 9C SBC A,H --- Beyond start of stack we are out of space.
1974 3804 JR C,197AH --- OM error if C-Free space list exceeds 65478, FFC6H
1976 67 LD H,A --- Now attempt to determine
1977 39 ADD HL,SP --- If free space list has
1978 E1 POP HL --- Overflowed stack area.
1979 D8 RET C --- No overflow if CARRY
197A 1E0C LD E,0CH --- OM error code
197C 1824 JR 19A2H --- Output OM error message
197E 2AA240 LD HL,(40A2H) --- HL = current line number *************************
1981 7C LD A,H --- Combine MSB
1982 A5 AND L --- With LSB

196

1936 * (Locate FOR push which matches caller's index specified *****

: Called w/DE = addr of NEXT index. Scans stk backwards
: looking for a FOR push. If one found get addr of index
: and compare w/caller's DE. If equal exit with A = 0,
: HL = addr of variable. If unequal keep scanning till no
: FOR push found & exit w/A<>0.

194C : <---:-: index from the stack

1955 * string area ******* On entry DE = upper limit **************
: This routine moves a variable (string
: usually) into another area specified by
: the caller.
: On entry:
: BC = end addr of list to move
: DE = start addr of list to move
: HL = end of area to move list to.

1963 * Compute amt of space between HL and end of memory FFC6. *****

197E * **

197

1983 3C INC A --- If current line = FFFF then we have cont-->
1984 2808 JR Z,198EH --- Jmp if BASIC pgm has not been executed. cont-->
1986 3AF240 LD A,(40F2H) --- Get error override flag
1989 B7 OR A --- Set status flags
198A 1E22 LD E,22H --- Code for NO RESUME error
198C 2014 JR NZ,19A2H --- Output NR error message if no RESUME addr
198E C3C11D JP 1DC1H --- Error while in Input Phase. Re-enter cont-->
1991 2ADA40 LD HL,(40DAH) --- Load line number for last DATA statement
1994 22A240 LD (40A2H),HL --- Store it in current line ptr
1997 1E02 LD E,02H --- SN error code
1999 011E14 LD BC,141EH --- 199A: LD E,14 /0 Error code
199C 011E00 LD BC,001EH --- 199D: LD E,0 NF Error code
199F 011E24 LD BC,241EH --- 19A1: LD E,24 RW error code
19A2 2AA240 LD HL,(40A2H) --- HL = addr of line with error *********************
19A5 22EA40 LD (40EAH),HL --- Save error line number
19A8 22EC40 LD (40ECH),HL --- Twice
19AB 01B419 LD BC,19B4H --- BC = continuation addr after re-initialization
19AE 2AE840 LD HL,(40E8H) --- HL = stack ptr for start of statement
19B1 C39A1B JP 1B9AH --- Go re-initialize system variables. Rtn to 19B4
19B4 C1 POP BC --- BC = 00 00
19B5 7B LD A,E --- A = error number
19B6 4B LD C,E --- C = error number
19B7 329A40 LD (409AH),A --- Save error number
19BA 2AE640 LD HL,(40E6H) --- HL = addr of last byte executed in current line
19BD 22EE40 LD (40EEH),HL --- Save addr of last byte executed
19C0 EB EX DE,HL --- Save HL
19C1 2AEA40 LD HL,(40EAH) --- HL = addr of last line executed
19C4 7C LD A,H --- Combine LSB of last line
19C5 A5 AND L --- Executed with MSB of last line
19C6 3C INC A --- Then test, if line number = FFFF
19C7 2807 JR Z,19D0H --- Line number = FFFF, still in Input Phase
19C9 22F540 LD (40F5H),HL --- Save error addr
19CC EB EX DE,HL --- Restore last byte executed
19CD 22F740 LD (40F7H),HL --- Save last byte executed
19D0 2AF040 LD HL,(40F0H) --- Get ON ERROR address
19D3 7C LD A,H --- Combine LSB with MSB so it can be
19D4 B5 OR L --- tested for zero
19D5 EB EX DE,HL --- DE = ON ERROR address
19D6 21F240 LD HL,40F2H --- Addr of flag word during ON ERROR processing
19D9 2808 JR Z,19E3H --- Jmp if no ON ERROR address
19DB A6 AND (HL) --- Test if RESUME processing in program
19DC 2005 JR NZ,19E3H --- Yes, cannot have nested RESUMES
19DE 35 DEC (HL) --- Flag an error so RESUME will work
19DF EB EX DE,HL --- HL = addr of statement to branch to
19E0 C3361D JP 1D36H --- Goto Execution Driver
19E3 AF XOR A --- Zero A ***
19E4 77 LD (HL),A --- Clear error override flag
19E5 59 LD E,C --- Error number to E
19E6 CDF920 CALL 20F9H --- Position video to next line
19E9 21C918 LD HL,18C9H --- HL = table of error codes
19EC CDA641 CALL 41A6H --- DOS Exit (load & execute BASIC error routine)
19EF 57 LD D,A --- Zero D
19F0 3E3F LD A,3FH --- A = ASCII '?'
19F2 CD2A03 CALL 032AH --- Print '?'
19F5 19 ADD HL,DE --- HL = addr
19F6 7E LD A,(HL) --- Get a char. of error code
19F7 CD2A03 CALL 032AH --- Print one char of error code
19FA D7 RST 10H --- Get next char of error code
19FB CD2A03 CALL 032AH --- And print it
19FE 211D19 LD HL,191DH --- Error message

198

1983 : not started execution of BASIC program
1984 : Still in Input Phase

198E : BASIC 'READY' routine. --- Load current data line number

19A2 * ***

19E3 * ***

199

1A01 E5 PUSH HL --- Save addr of 'ERROR' message
1A02 2AEA40 LD HL,(40EAH) --- HL = line number of statement causing error
1A05 E3 EX (SP),HL --- Line no. to stk. HL = addr of 'ERROR' message
1A06 CDA728 CALL 28A7H --- Print message here addr is in HL
1A09 E1 POP HL --- HL = binary line no. of STOP/END or line w/error
1A0A 11FEFF LD DE,0FFFEH --- DE = 65534 (10)
1A0D DF RST 18H --- Is current line no. = 65534
1A0E CA7406 JP Z,0674H --- Yes, IPL system
1A11 7C LD A,H --- No, test for line no. = 0
1A12 A5 AND L --- Combine MSB and LSB
1A13 3C INC A --- of current line no.
1A14 C4A70F CALL NZ,0FA7H --- If non-zero, print current line no.
1A17 3EC1 LD A,0C1H --- 1A18: POP BC
1A19 CD8B03 CALL 038BH --- Set output device to video ***** Flush current ***
1A1C CDAC41 CALL 41ACH --- line buffer. DOS Exit (JP 5FFC)
1A1F CDF801 CALL 01F8H --- Off cassette
1A22 CDF920 CALL 20F9H --- Skip to next line on video
1A25 212919 LD HL,1929H --- Ready message
1A28 CDA728 CALL 28A7H --- Print 'READY' message
1A2B 3A9A40 LD A,(409AH) --- Get error number
1A2E D602 SUB 02H --- Test for syntax error
1A30 CC532E CALL Z,2E53H --- If syntax error, enter EDIT routine
1A33 21FFFF LD HL,0FFFFH --- HL = current line no.
1A36 22A240 LD (40A2H),HL --- Set current line no. to -1. Signal cont-->
1A39 3AE140 LD A,(40E1H) --- Auto input flag field - Non zero if auto, 00H
1A3C B7 OR A --- Set status flags :if not auto
1A3D 2837 JR Z,1A76H --- Jmp & Print '>' prompt if no auto increment
1A3F 2AE240 LD HL,(40E2H) --- Else, fetch current line no. into HL
1A42 E5 PUSH HL --- Save line number on stack
1A43 CDAF0F CALL 0FAFH --- Output a line
1A46 D1 POP DE --- Load current line no. into DE for search routine
1A47 D5 PUSH DE --- And leave it on the stack
1A48 CD2C1B CALL 1B2CH --- Search for matching line number
1A4B 3E2A LD A,2AH --- '*' (matching line number)
1A4D 3802 JR C,1A51H --- Jmp if matching line number found
1A4F 3E20 LD A,20H --- Else print a blank
1A51 CD2A03 CALL 032AH -- Print a ' ' or '*'
1A54 CD6103 CALL 0361H --- Accept input into buffer
1A57 D1 POP DE --- DE = current line no.
1A58 3006 JR NC,1A60H --->: Jmp if BREAK not hit
1A5A AF XOR A <---:-: Else clear AUTO increment flag
1A5B 32E140 LD (40E1H),A -- : : Turn off AUTO increment
1A5E 18B9 JR 1A19H -- : : Go to 'READY'
1A60 2AE440 LD HL,(40E4H) <---:-: Get increment value *************************
1A63 19 ADD HL,DE -- : : Add to current line no. and test for overflow
1A64 38F4 JR C,1A5AH ----->: Jmp if line no. exceeds 2**15. Clear AUTO
1A66 D5 PUSH DE --- Save unincremented line no. on stack :increment
1A67 11F9FF LD DE,0FFF9H --- DE = 65529
1A6A DF RST 18H --- Compare bumped line no. to 65529
1A6B D1 POP DE --- DE = unincremented line no.
1A6C 30EC JR NC,1A5AH --- Jmp if bumped line no. => 65529
1A6E 22E240 LD (40E2H),HL --- Save unincremented value as current line no.
1A71 F6FF OR 0FFH --- Set A = -1
1A73 C3EB2F JP 2FEBH --- Use EDIT code to load buffer addr cont-->
1A76 3E3E LD A,3EH --- A = '>' (prompt) ******************* see note--> *
1A78 CD2A03 CALL 032AH --- Print '>'
1A7B CD6103 CALL 0361H --- Accept input, on return HL = buffer addr
1A7E DA331A JP C,1A33H --- Jmp if BREAK key hit. Go get next line
1A81 D7 RST 10H --- Get a char from buffer, skip blanks & control
1A82 3C INC A --- Set status flags but save carry :codes

200

1A19 * ***

1A36 : that execution has not started

1A60 * ***

1A73 : into HL. Then Jmp to 1A98
1A76 * Input line no. w/o AUTO increment ***************************

201

1A83 3D DEC A --- So we can test for end of statement
1A84 CA331A JP Z,1A33H --- Jmp if end of statement
1A87 F5 PUSH AF --- Save status (CARRY)-Get line in binary into DE
1A88 CD5A1E CALL 1E5AH --- Backspace input buffer over any trailing blanks
1A8B 2B DEC HL <---: that follow line number
1A8C 7E LD A,(HL) • : Get next character
1A8D FE20 CP 20H • : Check for blank
1A8F 28FA JR Z,1A8BH --->: Loop till last digit of line number found
1A91 23 INC HL --- HL = addr of first char following line number
1A92 7E LD A,(HL) --- Fetch first char after line number
1A93 FE20 CP 20H --- If its a blank then
1A95 CCC909 CALL Z,09C9H --- Bump buffer addr to next char
1A98 D5 PUSH DE --- Save binary line number
1A99 CDC01B CALL 1BC0H --- Encode input into tokens-BC=length of encoded stmt
1A9C D1 POP DE --- DE = line number in binary
1A9D F1 POP AF --- Get CARRY flag from fetch at 1A81
1A9E 22E640 LD (40E6H),HL --- Encoded statement pointer
1AA1 CDB241 CALL 41B2H --- DOS Exit (JP 6033)
1AA4 D25A1D JP NC,1D5AH --- Jmp if no line number. Must be Direct Statement
1AA7 D5 PUSH DE --- Save binary line number : or System command
1AA8 C5 PUSH BC --- Save length of code string
1AA9 AF XOR A --- Clear A and
1AAA 32DD40 LD (40DDH),A --- Set INPUT PHASE entered flag
1AAD D7 RST 10H --- Scan for 1st token
1AAE B7 OR A --- Set status flag
1AAF F5 PUSH AF --- Save them
1AB0 EB EX DE,HL --- HL = binary equivalent of line number
1AB1 22EC40 LD (40ECH),HL --- Save line number in communications area
1AB4 EB EX DE,HL --- DE = line number for search routine
1AB5 CD2C1B CALL 1B2CH --- Search for matching line number
1AB8 C5 PUSH BC --- After search, BC = addr of line number cont-->
1AB9 DCE42B CALL C,2BE4H --- If matching line not found shift closest line up
1ABC D1 POP DE --- in memory to make room for new line. cont-->
1ABD F1 POP AF --- Restore status from token scan at 1AAD
1ABE D5 PUSH DE --- Save addr of line in buffer
1ABF 2827 JR Z,1AE8H --- If matching line found, otherwise new cont-->
1AC1 D1 POP DE --- DE = addr of last line or line > new line
1AC2 2AF940 LD HL,(40F9H) --- HL = end of pgm line ptr
1AC5 E3 EX (SP),HL --- HL = length of code string. cont-->
1AC6 C1 POP BC --- BC = length of new line
1AC7 09 ADD HL,BC --- HL = new end of pgm line ptr
1AC8 E5 PUSH HL --- Save end of pgm addr
1AC9 CD5519 CALL 1955H --- Make sure enough room for new line. Test for PST
1ACC E1 POP HL --- HL = end of PST :overflow in stack area
1ACD 22F940 LD (40F9H),HL --- New end of PST addr
1AD0 EB EX DE,HL --- HL = addr of line to be moved up
1AD1 74 LD (HL),H --- Save MSB of addr of line to moved as cont-->
1AD2 D1 POP DE --- DE = new line number in binary
1AD3 E5 PUSH HL --- Save addr if line to be moved up
1AD4 23 INC HL --- Bump to LSB of line number entry
1AD5 23 INC HL --- Bump to MSB of line number entry
1AD6 73 LD (HL),E --- DE = binary value of line no for new line. Save
1AD7 23 INC HL --- Bump to MSB :LSB
1AD8 72 LD (HL),D --- Save MSB of new line in old line nos. position
1AD9 23 INC HL --- HL = stmt ptr (past line number)
1ADA EB EX DE,HL --- DE = first data byte addr following line number
1ADB 2AA740 LD HL,(40A7H) --- HL = input area ptr
1ADE EB EX DE,HL --- DE = input area ptr (fetch addr). cont-->
1ADF 1B DEC DE --- DE = input area ptr - 1
1AE0 1B DEC DE --- DE = input area ptr - 2

202

1AB8 : in buffer if it exists

1ABC : DE = addr of line in buffer

1ABF : line is to be added

1AC5 : Stack = addr of line to be moved

1AD1 : first byte of line

1ADE : HL = addr of first data position in pgm area (store addr)

203

1AE1 1A LD A,(DE) <---: Get a byte of pgm from input buffer
1AE2 77 LD (HL),A • : Move it to pgm storage area (PST)
1AE3 23 INC HL • : Bump store addr
1AE4 13 INC DE • : Bump fetch addr
1AE5 B7 OR A • : Test for end of code string
1AE6 20F9 JR NZ,1AE1H --->: Jmp if not end of statement to be moved
1AE8 D1 POP DE --- DE = addr of line in pgm table
1AE9 CDFC1A CALL 1AFCH --- Update line ptrs for all line following new line
1AEC CDB541 CALL 41B5H --- DOS Exit (JP 5BD7)
1AEF CD5D1B CALL 1B5DH --- Update 40FB, 40FD line ptrs = 40F9
1AF2 CDB841 CALL 41B8H --- DOS Exit (JP 5B8C)
1AF5 C3331A JP 1A33H --- Loop back to repeat input sequence
1AF8 2AA440 LD HL,(40A4H) --- HL = start addr of PST (entered from Disk BASIC)
1AFB EB EX DE,HL --- Move PST addr to HL
1AFC 62 LD H,D <---: HL = current line ptr ************ see note--> *
1AFD 6B LD L,E • : First 2 bytes of each line contains addr of next
1AFE 7E LD A,(HL) • : line. An addr of 00 00 terminates cont-->
1AFF 23 INC HL • : Look for end byte
1B00 B6 OR (HL) • : of pgm (0000)
1B01 C8 RET Z • : Return if end
1B02 23 INC HL • : HL = beginning of stmt ptr cont-->
1B03 23 INC HL • : Skip over 3 & 4th bytes of
1B04 23 INC HL • : current line which hold its line no.
1B05 AF XOR A • : A = 0, status flags cleared
1B06 BE CP (HL) <--:: Scan for end of current line its cont-->
1B07 23 INC HL • :: When end found, HL+1 will be addr of next line
1B08 20FC JR NZ,1B06H -->:: Loop till end of stmt found
1B0A EB EX DE,HL • : DE=end of stmt + 1 (ptr to next stmt) cont->
1B0B 73 LD (HL),E • : Move addr of next line to 1st 2 bytes of current
1B0C 23 INC HL • : Save LSB of next line addr :line
1B0D 72 LD (HL),D • : Save MSB of next line addr
1B0E 18EC JR 1AFCH --->: Loop till end of pgm found
1B10 110000 LD DE,0000H --- Initialize starting line to 0 in case * cont--> *
1B13 D5 PUSH DE --- none is specified. Save on stack
1B14 2809 JR Z,1B1FH --- Jmp if no line nos. given
1B16 D1 POP DE --- Clear temp. starting value
1B17 CD4F1E CALL 1E4FH --- Get starting line no. in DE
1B1A D5 PUSH DE --- Save starting line no.
1B1B 280B JR Z,1B28H --->: Jmp if no ending line specified
1B1D CF RST 08H -- : Test for dash following line number
1B1E CE11 ADC A,11H -- : 1B1E : DC CE dash token
1B20 FAFFC4 JP M,0C4FFH -- : 1B1F : LD DE,FFAF default ending line number
1B23 4F LD C,A -- : 1B22 : CALL NZ,1E4F get ending line no into DE
1B24 1EC2 LD E,0C2H -- : 1B25 : JP NZ,1997 SN Error if no terminator
1B26 97 SUB A -- :
1B27 19 ADD HL,DE -- :
1B28 EB EX DE,HL <---: HL = ending line no.
1B29 D1 POP DE --- DE = starting line no.
1B2A E3 EX (SP),HL --- Ending line no to stack. Rtn addr to HL
1B2B E5 PUSH HL --- Rtn addr to stack so we can exit below
1B2C 2AA440 LD HL,(40A4H) --- HL = starting addr of PST ************** cont--> *
1B2F 44 LD B,H --- DE = Line number to locate
1B30 4D LD C,L --- BC = address of current line in PST
1B31 7E LD A,(HL) --- A = LSB of addr of next line
1B32 23 INC HL --- Bump to MSB of addr of next line
1B33 B6 OR (HL) --- Combine MSB/LSB and set status flags
1B34 2B DEC HL --- Restore HL to start of current line
1B35 C8 RET Z --- Exit if end of PST, else
1B36 23 INC HL --- Bump HL to point to line number
1B37 23 INC HL --- for current line

204

1AFC * Update line pointers for all lines after new line. **********
* DE = Addr of Program Statement Table

1AFE : the program. Get 1st byte of current line and combine w/2nd

1B02 : (Past next stmt ptr and line number)

1B06 : terminated by 00

1B0A : HL = current line ptr

1B10 * **** Called by LIST/DELETE **********************************
: Converts starting and ending line numbers (X - Y) to
: binary and saves ending line number on stack.
: Then falls into code below to locate pgm table addr for
: starting line. Leaves addr of starting line in BC -
: ending line number on stack

1B2C * Search for matching line routine ***************************
: Exit conditions
: Line not found. End of PST encountered:
: NC/Z/HL = BC
: Line found: DE=HL/C/Z, BC = addr of line in PST
: HL = addr of next line
: Line not found. Line number > asked for line number
: DE>HL/NC/NZ, BC = addr of current line
: HL = addr of next line

205

1B38 7E LD A,(HL) --- A = LSB of line no. for current line
1B39 23 INC HL --- Bump to MSB
1B3A 66 LD H,(HL) --- HL = MSB of line no. for current line
1B3B 6F LD L,A --- L = LSB of current line number
1B3C DF RST 18H --- Subtract line no. in DE from line no. for current
1B3D 60 LD H,B --- Set HL = starting addr of current line :statement
1B3E 69 LD L,C --- L = LSB of start addr of current line
1B3F 7E LD A,(HL) --- Now, get addr of next line into HL
1B40 23 INC HL --- Bump to MSB of addr of next line
1B41 66 LD H,(HL) --- H = MSB of addr for next line
1B42 6F LD L,A --- Form addr of next line in HL
1B43 3F CCF --- CARRY set if current line cont-->
1B44 C8 RET Z --- Line numbers match. Exit C, Z, cont-->
1B45 3F CCF --- No match, reverse CARRY & exit if
1B46 D0 RET NC --- line no. in DE < current line number cont-->
1B47 18E6 JR 1B2FH --- Loop till end of pgm or line number cont-->
1B49 C0 RET NZ --- Syntax error if NEW XX ************** NEW routine *
1B4A CDC901 CALL 01C9H --- Clear screen
1B4D 2AA440 LD HL,(40A4H) --- HL = start of Program Statement Table (PST)
1B50 CDF81D CALL 1DF8H --- Turn TRACE OFF
1B53 32E140 LD (40E1H),A --- Clear AUTO INCREMENT flag
1B56 77 LD (HL),A --- Initialize PST as empty by
1B57 23 INC HL --- zeroing first two bytes
1B58 77 LD (HL),A --- Zero 2nd byte
1B59 23 INC HL --- then
1B5A 22F940 LD (40F9H),HL --- initialize the start of the variable cont-->
1B5D 2AA440 LD HL,(40A4H) --- Reload HL with PST addr *** RUN starts here ***
1B60 2B DEC HL --- and backspace 1. This will be the
1B61 22DF40 LD (40DFH),HL --- beginning execution addr for the program
1B64 061A LD B,1AH --- 26 alpha characters ** RUN line no. starts here ***
1B66 210141 LD HL,4101H --- Def alpha table entries initialized to 004H
1B69 3604 LD (HL),04H --- Load one value :(single precision)
1B6B 23 INC HL --- Bump to next entry
1B6C 10FB DJNZ 1B69H --- Loop till DEC ALPHA table initialized
1B6E AF XOR A --- Clear A-reg
1B6F 32F240 LD (40F2H),A --- Signal no error for RESUME verb
1B72 6F LD L,A --- then
1B73 67 LD H,A --- Zero HL
1B74 22F040 LD (40F0H),HL --- Set ON ERROR address to zero
1B77 22F740 LD (40F7H),HL --- Points to next statement following a cont-->
1B7A 2AB140 LD HL,(40B1H) --- Highest memory pointer
1B7D 22D640 LD (40D6H),HL --- String working area pointer
1B80 CD911D CALL 1D91H --- Restore
1B83 2AF940 LD HL,(40F9H) --- HL = end of basic pgm
1B86 22FB40 LD (40FBH),HL --- Simple variable ptrs
1B89 22FD40 LD (40FDH),HL --- Array ptrs
1B8C CDBB41 CALL 41BBH --- DOS Exit (JP 5B8C)
1B8F C1 POP BC --- Load return addr because we will be cont-->
1B90 2AA040 LD HL,(40A0H) --- HL = Start of string data ptr
1B93 2B DEC HL --- HL = Start of string data ptr - 1
1B94 2B DEC HL --- -2
1B95 22E840 LD (40E8H),HL --- Stack ptr = start of string data ptr - 2
1B98 23 INC HL --- HL = start of string data ptr +1
1B99 23 INC HL --- +2
1B9A F9 LD SP,HL --- SP = start of string data ptr
1B9B 21B540 LD HL,40B5H --- Initialize literal string pool table as empty
1B9E 22B340 LD (40B3H),HL --- Start of LSPT to 40 B3
1BA1 CD8B03 CALL 038BH --- Output device = video: Print line printer buffer
1BA4 CD6921 CALL 2169H --- Turn off cassette and set output device = video
1BA7 AF XOR A --- Zero A then

206

1B43 : number < value in DE. After CCF CARRY is cleared.
1B44 : BC = addr of current line, HL = addr next line

1B46 : BC = addr of current line, HL = addr next line
1B47 : Greater than requested one found
1B49 * ***

1B5A : list table as the end of the PST

1B77 : BREAK, STOP or END.

1B8F : changing stack pointer

207

1BA8 67 LD H,A --- Clear HL for 'RUN' push
1BA9 6F LD L,A --- Zero L
1BAA 32DC40 LD (40DCH),A --- Clear 'FOR' statement flag
1BAD E5 PUSH HL --- Signal 'RUN' push
1BAE C5 PUSH BC --- Return addr to continue executing code string
1BAF 2ADF40 LD HL,(40DFH) --- Restore code string addr to HL
1BB2 C9 RET --- Rtn to caller
1BB3 3E3F LD A,3FH --- A = ASCII ? **************************************
1BB5 CD2A03 CALL 032AH --- Print ?
1BB8 3E20 LD A,20H --- A = ASCII space
1BBA CD2A03 CALL 032AH --- Print space
1BBD C36103 JP 0361H --- Wait for keyboard input and rtn to caller
1BC0 AF XOR A --- Zero A ***
1BC1 32B040 LD (40B0H),A --- Clear DATA statement flag
1BC4 4F LD C,A --- Zero C-reg
1BC5 EB EX DE,HL --- DE = addr of first char after line number
1BC6 2AA740 LD HL,(40A7H) --- HL = input area ptr = tokenized string addr
1BC9 2B DEC HL --- Backspace
1BCA 2B DEC HL --- twice
1BCB EB EX DE,HL --- DE = input string addr - 2
1BCC 7E LD A,(HL) --- HL = current input string addr
1BCD FE20 CP 20H --- Fetch next char. from input string
1BCF CA5B1C JP Z,1C5BH --- Test for space
1BD2 47 LD B,A --- Jump if blank
1BD3 FE22 CP 22H --- Save input character
1BD5 CA771C JP Z,1C77H --- Test for quote
1BD8 B7 OR A --- If quote, move entire field between quotes to code
1BD9 CA7D1C JP Z,1C7DH --- Set status flags :string
1BDC 3AB040 LD A,(40B0H) --- Jmp if end of string
1BDF B7 OR A --- A = DATA statement flag
1BE0 7E LD A,(HL) --- Set status flags
1BE1 C25B1C JP NZ,1C5BH --- Load next char from input string
1BE4 FE3F CP 3FH --- Jump if DATA stmt encountered
1BE6 3EB2 LD A,0B2H --- '?' abbreviation for print
1BE8 CA5B1C JP Z,1C5BH --- Print token replaces question mark
1BEB 7E LD A,(HL) --- Jmp if '?' (print token)
1BEC FE30 CP 30H --- Re-fetch current character
1BEE 3805 JR C,1BF5H --- Test for numeric as alpha-numeric
1BF0 FE3C CP 3CH --- Char < 30 - that means it's not a letter or digit
1BF2 DA5B1C JP C,1C5BH --- Char < 3C - that means 0-9,:,;,< cont-->
1BF5 D5 PUSH DE --- Save pointer to buffer origin -2, -1, . .
1BF6 114F16 LD DE,164FH --- DE addr of syntax tree
1BF9 C5 PUSH BC --- Save BC
1BFA 013D1C LD BC,1C3DH --- Rtn add after matching syntax tree
1BFD C5 PUSH BC --- W/input string
1BFE 067F LD B,7FH --- B = syntax tree control char count
1C00 7E LD A,(HL) --- Current input character
1C01 FE61 CP 61H --- Test for upper case
1C03 3807 JR C,1C0CH --->: Jump if not lower case
1C05 FE7B CP 7BH -- : Test for upper case
1C07 3003 JR NC,1C0CH --->: Jump if not lower case
1C09 E65F AND 5FH -- : Make upper case
1C0B 77 LD (HL),A -- : Save converted character
1C0C 4E LD C,(HL) <---: Reload current character
1C0D EB EX DE,HL --- HL = syntax list, DE = addr of current string
1C0E 23 INC HL <---: Bump to next char in syntax list
1C0F B6 OR (HL) • :Set status flags for current char cont-->
1C10 F20E1C JP P,1C0EH --->: Scan syntax list till control char found
1C13 04 INC B --- Count of syntax control char passed
1C14 7E LD A,(HL) --- Get syntax element

208

1BB3 * ***

1BC0 * ***

1BF2 : Constant or special char. Move it to token area.

1C0F : from syntax list

209

1C15 E67F AND 7FH --- Clear sign bit
1C17 C8 RET Z --- Zero terminates syntax list, goto 1C3D
1C18 B9 CP C --- Compare input element w/syntax element
1C19 20F3 JR NZ,1C0EH --- No match, scan till past control element
1C1B EB EX DE,HL --- HL = start of current symbol in input string
1C1C E5 PUSH HL --- Save starting addr of current symbol
1C1D 13 INC DE <-----: Bump to next char in syntax list
1C1E 1A LD A,(DE) • :Get next syntax list element
1C1F B7 OR A • : Set status flags for end of name test
1C20 FA391C JP M,1C39H ------:->: Jmp if control element, we have a
1C23 4F LD C,A • : : Complete match. Save next syntax element
1C24 78 LD A,B • : : If count of keyword being examined is
1C25 FE8D CP 8DH • : : 8D then we are testing for a GOTO
1C27 2002 JR NZ,1C2BH --->: : : Jump if not 'GOTO' token
1C29 D7 RST 10H • : : : Skip following char if its blank
1C2A 2B DEC HL • : : : Decrement for following skip
1C2B 23 INC HL <---: : : Skip to next char
1C2C 7E LD A,(HL) • : : Get next element from input string
1C2D FE61 CP 61H • : : Test for upper case
1C2F 3802 JR C,1C33H --->: : : Jump if not lower case
1C31 E65F AND 5FH • : : : Force upper case
1C33 B9 CP C <---: : : Compare input element & syntax element
1C34 28E7 JR Z,1C1DH ----->: : Jmp if equal
1C36 E1 POP HL --- : Unequal, restart scan from last
1C37 18D3 JR 1C0CH --- : Point in syntax list
1C39 48 LD C,B <--------: Syntax list index
1C3A F1 POP AF --- Get rid of HL push at 1C1C
1C3B EB EX DE,HL --- HL = syntax tree addr for this string, DE =
1C3C C9 RET --- current string Goto 1C3D
1C3D EB EX DE,HL --- HL = current string
1C3E 79 LD A,C --- A = syntax list index
1C3F C1 POP BC --- Clear rtn addr from stack
1C40 D1 POP DE --- DE = input string buffer origin-2 - cont-->
1C41 EB EX DE,HL --- HL = buffer origin-2, DE = current string addr
1C42 FE95 CP 95H --- Test if ELSE token
1C44 363A LD (HL),3AH --- ':' buffer origin-2
1C46 2002 JR NZ,1C4AH --->: Jump if not 'ELSE' token
1C48 0C INC C -- : Count 1 char in token buffer
1C49 23 INC HL -- : Bump to next position in token buffer
1C4A FEFB CP 0FBH <---: Test for REM token
1C4C 200C JR NZ,1C5AH --->: Jump if not ''' (abbreviation for 'REM') token
1C4E 363A LD (HL),3AH -- : ':' to tokenized buffer
1C50 23 INC HL -- : next pos. in token buffer
1C51 0693 LD B,93H -- . 'REM' token
1C53 70 LD (HL),B -- : To tokenized buffer
1C54 23 INC HL -- : Next pos. in token buffer
1C55 EB EX DE,HL -- : HL = input string addr. DE = token buffer addr.
1C56 0C INC C -- : Count 2
1C57 0C INC C -- : More chars to token buffer
1C58 181D JR 1C77H -- : Go move comment to token buffer
1C5A EB EX DE,HL <---: DE = buffer area-2, HL = current string addr
1C5B 23 INC HL --- Bump to next char in input string
1C5C 12 LD (DE),A --- Syntax tree index to buffer origin-2 : or if blank
1C5D 13 INC DE --- DE = buffer origin-1 : move the
1C5E 0C INC C --- C = index for next syntax element : blank
1C5F D63A SUB 3AH --- Test for multi-statement line
1C61 2804 JR Z,1C67H --->: Jmp if multi-statement line
1C63 FE4E CP 4EH -- : Test for DATA stmt
1C65 2003 JR NZ,1C6AH -- : Jump if not 'DATA' token
1C67 32B040 LD (40B0H),A <---: Syntax list index to flag 'data' statement

210

1C40 : loaded at 1CF5

211

1C6A D659 SUB 59H --- Test for REM token
1C6C C2CC1B JP NZ,1BCCH --- Jump if not 'REM' token. Analyze rest of statement
1C6F 47 LD B,A --- B = 00
1C70 7E LD A,(HL) <---: Get next char from input string
1C71 B7 OR A • : Set status flags so we can test for EOS
1C72 2809 JR Z,1C7DH ----:>: Jmp if EOS
1C74 B8 CP B • : : Move statement from input buffer to input
1C75 28E4 JR Z,1C5BH • : : buffer - 2. Loop till EOS detected. Count
1C77 23 INC HL • : : of characters moved in BC. Also entered if
1C78 12 LD (DE),A • : : a ' ' string is detected.
1C79 0C INC C • : : Count 1 char added to token buffer
1C7A 13 INC DE • : : Bump token buffer addr.
1C7B 18F3 JR 1C70H --->: : Loop till EOS or ending quote found
1C7D 210500 LD HL,0005H <-----: Now, add
1C80 44 LD B,H --- Five to the length of the
1C81 09 ADD HL,BC --- token buffer thus far
1C82 44 LD B,H --- then leave
1C83 4D LD C,L --- New count in BC
1C84 2AA740 LD HL,(40A7H) --- Get start of input string area
1C87 2B DEC HL --- Backspace once
1C88 2B DEC HL --- Backspace twice
1C89 2B DEC HL --- Three times
1C8A 12 LD (DE),A --- Then zero
1C8B 13 INC DE --- Last 3 words of tokenized string
1C8C 12 LD (DE),A --- Second zero
1C8D 13 INC DE --- Bump addr
1C8E 12 LD (DE),A --- Third zero
1C8F C9 RET --- Rtn to caller
1C90 7C LD A,H --- Compute *********** RST 18 sends you here *******
1C91 92 SUB D --- H - D Computes HL-DE
1C92 C0 RET NZ --- Exit if unequal Z if equal
1C93 7D LD A,L --- Compute C if DE>HL
1C94 93 SUB E --- L - E
1C95 C9 RET --- and rtn to caller
1C96 7E LD A,(HL) --- Get value to be compared * RST 08 routine *******
1C97 E3 EX (SP),HL --- Save rtn addr.
1C98 BE CP (HL) --- Compare (HL) with value following RST 8
1C99 23 INC HL --- Bump rtn addr
1C9A E3 EX (SP),HL --- Restore rtn addr to stack, cont-->
1C9B CA781D JP Z,1D78H --- CALL RST 10 If expected character found
1C9E C39719 JP 1997H --- SN error if expected char not found
1CA1 3E64 LD A,64H --- FOR signal value ******************* FOR routine *
1CA3 32DC40 LD (40DCH),A --- Signal FOR statement.
1CA6 CD211F CALL 1F21H --- Evaluates x = y (index)
1CA9 E3 EX (SP),HL --- Save code string addr. DE=addr of index variable
1CAA CD3619 CALL 1936H --- Scan stack backwards looking for other cont-->
1CAD D1 POP DE --- DE = current code string addr (addr of TO token)
1CAE 2005 JR NZ,1CB5H --->: Jmp if nested 'FOR' not on stack cont-->
1CB0 09 ADD HL,BC -- : BC = Offset to end of stack frame cont-->
1CB1 F9 LD SP,HL -- : Reset CSP to this addr. Regain the cont-->
1CB2 22E840 LD (40E8H),HL -- : NF error next. Save CSP addr in 40E8
1CB5 EB EX DE,HL <---: HL = current code string addr
1CB6 0E08 LD C,08H --- C = 1/2 amt. of space needed
1CB8 CD6319 CALL 1963H --- Make sure there's 16 bytes of free space
1CBB E5 PUSH HL --- Save code string addr before 'TO'
1CBC CD051F CALL 1F05H --- Scan till end of statement
1CBF E3 EX (SP),HL --- Stack = end of statement, cont-->
1CC0 E5 PUSH HL --- Code string addr to stk. should point to TO token
1CC1 2AA240 LD HL,(40A2H) --- HL = current line no. in binary.
1CC4 E3 EX (SP),HL --- Stack = end of line addr. FOR line no. cont-->

212

1C90 * ***

1C96 * RST 08 sends you here ***************************************

1C9A : HL = current code string pointer

1CA1 * ***

1CAA : FOR/NEXT token with same index (Error if found)

1CAE : If one is found, on exit HL = starting addr of FOR push
1CB0 : After addition we are at end of 1st FOR frame push
1CB1 : stack space and force a NF error

1CBF : HL = current position in statement

1CC4 : in binary for FOR statement

213

1CC5 CF RST 08H --- Test for TO token
1CC6 BD CP L --- DC BD TO token
1CC7 E7 RST 20H --- Test data type of index variable
1CC8 CAF60A JP Z,0AF6H --- TM error if Z (string)
1CCB D2F60A JP NC,0AF6H --- TM error if NC (double)
1CCE F5 PUSH AF --- Save type flags
1CCF CD3723 CALL 2337H --- Evaluate TO side of FOR statement
1CD2 F1 POP AF --- Restore index type flags
1CD3 E5 PUSH HL --- Save current position in code string after TO
1CD4 F2EC1C JP P,1CECH --->: Jmp if index is single precision :token
1CD7 CD7F0A CALL 0A7FH • : Current TO value to integer
1CDA E3 EX (SP),HL • : Integer value to stack. Reload HL
1CDB 110100 LD DE,0001H • : DE = increment in case STEP not specified
1CDE 7E LD A,(HL) • : Get next element from code string
1CDF FECC CP 0CCH • : Compare with STEP token
1CE1 CC012B CALL Z,2B01H • : Call if 'STEP' token - Get step value into DE
1CE4 D5 PUSH DE • : Save step value
1CE5 E5 PUSH HL • : Save code string position
1CE6 EB EX DE,HL • : STEP value to HL so we test its size
1CE7 CD9E09 CALL 099EH • : Get sign of STEP into A. A=+1 if pos., -1 if neg
1CEA 1822 JR 1D0EH ----:>: Skip over single precision code for counter
1CEC CDB10A CALL 0AB1H <---: : Convert TO value to single precision :& step
1CEF CDBF09 CALL 09BFH -- : Load counter into BC/DE
1CF2 E1 POP HL -- : HL = end of TO expression
1CF3 C5 PUSH BC -- : Save TO value (limit)
1CF4 D5 PUSH DE -- : All four bytes of it
1CF5 010081 LD BC,8100H -- : BC = single precision 1 = default STEP value
1CF8 51 LD D,C -- : 0000 = DE
1CF9 5A LD E,D -- : E as well
1CFA 7E LD A,(HL) -- : A = next element from code string
1CFB FECC CP 0CCH -- : Test for STEP token
1CFD 3E01 LD A,01H -- : Default step = 1
1CFF 200E JR NZ,1D0FH --->: : Jump if not 'STEP' token
1D01 CD3823 CALL 2338H -- : : Evaluate STEP expression
1D04 E5 PUSH HL -- : : Save code string addr
1D05 CDB10A CALL 0AB1H -- : : Convert value to single precision
1D08 CDBF09 CALL 09BFH -- : : Load STEP expression value into BC/DE
1D0B CD5509 CALL 0955H -- : : Get sign of STEP value into A. +1=pos,-1=neg
1D0E E1 POP HL <---:-: HL = current code string addr
1D0F C5 PUSH BC <---: Save STEP expression
1D10 D5 PUSH DE --- On stack
1D11 4F LD C,A --- Sign flag for STEP value to C
1D12 E7 RST 20H --- Test data type for STEP value
1D13 47 LD B,A --- B = type for STEP value. cont-->
1D14 C5 PUSH BC --- Save type adjusted / sign flag
1D15 E5 PUSH HL --- Save current code string addr on stack
1D16 2ADF40 LD HL,(40DFH) --- HL = addr of index from FOR x = y
1D19 E3 EX (SP),HL --- HL = code string addr. Stack = addr of x variable
1D1A 0681 LD B,81H --- B = FOR token
1D1C C5 PUSH BC --- Save FOR token / sign of STEP increment
1D1D 33 INC SP --- Leave a one byte gap on the stack cont-->
1D1E CD5803 CALL 0358H --- Set status flags for input
1D21 B7 OR A --- If key was hit, check for shift @
1D22 C4A01D CALL NZ,1DA0H --- Save address of last byte executed in current line
1D25 22E640 LD (40E6H),HL --- Save CSP
1D28 ED73E840 LD (40E8H),SP --- Fetch next character from input string
1D2C 7E LD A,(HL) --- and test for a compound statement
1D2D FE3A CP 3AH --- Jump if ':' - Multiple statement this line
1D2F 2829 JR Z,1D5AH --- Else, make sure code string terminates
1D31 B7 OR A --- Set status flags

214

1D13 : -1 (int), +1 (sing) C = STEP sign flag

1D1E : Continue execution of code string. Test for keyboard input

215

1D32 C29719 JP NZ,1997H --- SN error if NC with a byte of zeroes
1D35 23 INC HL --- Get LSB of pointer to next statement
1D36 7E LD A,(HL) --- Test for non-zero by combining
1D37 23 INC HL --- with MSB byte
1D38 B6 OR (HL) --- of pointer to the next statement
1D39 CA7E19 JP Z,197EH --- Jmp if last executable statement, else
1D3C 23 INC HL --- Get line number of next statement
1D3D 5E LD E,(HL) --- into DE
1D3E 23 INC HL --- Bump to MSB of line number for next statement
1D3F 56 LD D,(HL) --- DE = binary line number of next statement
1D40 EB EX DE,HL --- HL = Line number for next statement
1D41 22A240 LD (40A2H),HL --- Update last executed line to current line number
1D44 3A1B41 LD A,(411BH) --- Get TRACE flag
1D47 B7 OR A --- Set status flags
1D48 280F JR Z,1D59H --->: Jmp if TROFF, fall through if TRON
1D4A D5 PUSH DE -- : Save DE since display routine uses it
1D4B 3E3C LD A,3CH -- : ASCII '<'
1D4D CD2A03 CALL 032AH -- : Print '<'
1D50 CDAF0F CALL 0FAFH -- : Convert line number to binary & print it
1D53 3E3E LD A,3EH -- : ASCII '>'
1D55 CD2A03 CALL 032AH -- : Print '>' (This gives dine number>)
1D58 D1 POP DE -- : Restore DE
1D59 EB EX DE,HL <---: HL = code string current line
1D5A D7 RST 10H --- Get next token ***** Execution phase starts here **
1D5B 111E1D LD DE,1D1EH --- Rtn addr after executing one verb
1D5E D5 PUSH DE --- Rtn addr onto stack
1D5F C8 RET Z --- Exit if EOS (end of statement) - Go back to 1D1E
1D60 D680 SUB 80H --- (tokens range from 80 - FB) Compute rel. token
1D62 DA211F JP C,1F21H --- Not a token - must be assignment stmt :index
1D65 FE3C CP 3CH --- Test if token below TAB token
1D67 D2E72A JP NC,2AE7H --- Jmp if token => BC (TAB - MID$,')
1D6A 07 RLCA --- Double remainder for routine address offset
1D6B 4F LD C,A --- BC = routine offset
1D6C 0600 LD B,00H --- BC = 00 / 2 * token
1D6E EB EX DE,HL --- Save HL (current location in code string)
1D6F 212218 LD HL,1822H --- Address table of verb action routines
1D72 09 ADD HL,BC --- HL = routine table address ptr
1D73 4E LD C,(HL) --- C = LSB of verb action routine addr
1D74 23 INC HL --- Bump to MSB
1D75 46 LD B,(HL) --- B = MSB of verb action routine addr
1D76 C5 PUSH BC --- Save routine address on stack see note -->
1D77 EB EX DE,HL --- Restore code string address
1D78 23 INC HL <---:-: Bump to next character *** RST 10 action rtne *
1D79 7E LD A,(HL) • : : Get next character
1D7A FE3A CP 3AH • : : Compare it with a colon (:)
1D7C D0 RET NC • : : Rtn if character is :,;,<,.....A - Z
1D7D FE20 CP 20H • : : else test for a blank
1D7F CA781D JP Z,1D78H --->: : Get next character if this one is a blank
1D82 FE0B CP 0BH -- : Compare it with a vertical TAB
1D84 3005 JR NC,1D8BH --->: : Jump if A >= 0B (not a control code)
1D86 FE09 CP 09H • : : Test for a horizontal TAB
1D88 D2781D JP NC,1D78H ----:>: Jmp if not horizontal TAB or line feed
1D8B FE30 CP 30H <---: Compare with ASCII '0'
1D8D 3F CCF --- Set CARRY if numeric (>=30)
1D8E 3C INC A --- Clear CARRY if not numeric (<30)
1D8F 3D DEC A --- Set status flags (except CARRY) according to
1D90 C9 RET --- Rtn to caller : character just loaded
1D91 EB EX DE,HL --- Save HL *********************** RESTORE routine **
1D92 2AA440 LD HL,(40A4H) --- HL = start of program ptr
1D95 2B DEC HL --- Backspace 1 byte, save HL

216

1D5A : Find next non-blank character in code string ****************
: Method:
: 1. Locate next token in current statement and
: branch to verb action routine. Force return to
: 1D1E after verb routine.
: 2. After each completed verb action routine test
: for BREAK, end of line (bump to next line), end
: of program (rtn to INPUT PHASE),or TRON option
: goto step 1

: (It will be popped below)

1D78 * RST 10 routine addr sends you here **************************

1D91 * ***

217

1D96 22FF40 LD (40FFH),HL --- Data ptr = start of program - 1
1D99 EB EX DE,HL --- Restore HL
1D9A C9 RET --- Rtn to caller
1D9B CD5803 CALL 0358H --- Scan keyboard once *******************************
1D9E B7 OR A --- Set status flags for character strobed
1D9F C8 RET Z --- Return if no key
1DA0 FE60 CP 60H --- Shift @ ?
1DA2 CC8403 CALL Z,0384H --- if so, wait until user types a character
1DA5 329940 LD (4099H),A --- Save character typed
1DA8 3D DEC A --- A + 1 if break key
1DA9 C0 RET NZ --- Stop routine *************************************
1DAA 3C INC A --- Set A = 1, status non-zero
1DAB C3B41D JP 1DB4H --- Use END code
1DAE C0 RET NZ --- Syntax error if END XX ************ END routine **
1DAF F5 PUSH AF --- Save zero status (END processing)
1DB0 CCBB41 CALL Z,41BBH --- DOS Exit (JP 60A1)
1DB3 F1 POP AF --- Restore END status to A status register
1DB4 22E640 LD (40E6H),HL --- Current code string addr for STOP or END
1DB7 21B540 LD HL,40B5H --- HL = start of literal string area
1DBA 22B340 LD (40B3H),HL --- Reset pointer to start of literal string area
1DBD 21F6FF LD HL,0FFF6H --- 1DBE: OR FF
1DC0 C1 POP BC --- Clear stack
1DC1 2AA240 LD HL,(40A2H) --- Current line no. in binary
1DC4 E5 PUSH HL --- Save binary line no. for STOP/END stmt
1DC5 F5 PUSH AF --- A = 0 (END), 1 (STOP)
1DC6 7D LD A,L --- Combine LSB of current line with
1DC7 A4 AND H --- MSB of current line no.. so we can
1DC8 3C INC A --- test for uninitialized line no. (FFFF)
1DC9 2809 JR Z,1DD4H --->: Jmp if line no. = FFFF pgm execution not started
1DCB 22F540 LD (40F5H),HL -- : Else, save line number we ended on
1DCE 2AE640 LD HL,(40E6H) -- : HL = current line number
1DD1 22F740 LD (40F7H),HL -- : Save in 40F7
1DD4 CD8B03 CALL 038BH <---: Initialize output DCB to the video
1DD7 CDF920 CALL 20F9H --- Print a CR
1DDA F1 POP AF --- Restore A = 0 (END), 1 (STOP)
1DDB 213019 LD HL,1930H --- Addr of break message
1DDE C2061A JP NZ,1A06H --- Jmp if STOP encountered
1DE1 C3181A JP 1A18H --- Jmp if END statement or error in command mode
1DE4 2AF740 LD HL,(40F7H) --- HL = last stmt byte scanned *** Cont routine ***
1DE7 7C LD A,H --- Combine LSB/MSB of addr
1DE8 B5 OR L --- for last statement executed
1DE9 1E20 LD E,20H --- CN error code
1DEB CAA219 JP Z,19A2H --- Output CN if no continuation addr
1DEE EB EX DE,HL --- Continuation line number to DE
1DEF 2AF540 LD HL,(40F5H) --- HL = last line number executed
1DF2 22A240 LD (40A2H),HL --- Save line number with error
1DF5 EB EX DE,HL --- then set HL = addr of continuation line no.
1DF6 C9 RET --- Go begin execution at continuation line
1DF7 3EAF LD A,0AFH --- Set A-reg non-zero for TRON *** TRON routine *****
1DF9 321B41 LD (411BH),A --- 1DF8: XOR A Set A-reg zero for TROFF
1DFC C9 RET --- Save TRON/TROFF flag and return to interpreter
1DFD F1 POP AF • These instructions
1DFE E1 POP HL • are not used by
1DFF C9 RET • Level II
1E00 1E03 LD E,03H --- E = type for string values ** DEFSTR routine *****
1E02 011E02 LD BC,021EH --- lE03 LD E,02 DEFINT routine
1E05 011E04 LD BC,041EH --- lE06 LD E,04 DEFSNG routine
1E08 011E08 LD BC,081EH --- 1E09 LD E,08 DEFDBL routine
1E0B CD3D1E CALL 1E3DH --- Test next element in code string. Make sure its a
1E0E 019719 LD BC,1997H --- Error addr in case its not :letter

218

1D9B * ***

1DA0 * ***

1DA9 * ***

1DAE * ***

1DE4 * **

1DF7 * ***

1E00 * ***

219

1E11 C5 PUSH BC --- Error addr to stack
1E12 D8 RET C --- Syntax error if no letter follows DEFSTR
1E13 D641 SUB 41H --- Subtract an ASCII 'A' which gives a value in
1E15 4F LD C,A --- range 0-25. Save range value in C
1E16 47 LD B,A --- and in B
1E17 D7 RST 10H --- Examine next element in code string
1E18 FECE CP 0CEH --- Test for a dash (-) token
1E1A 2009 JR NZ,1E25H --- No range of letters specified
1E1C D7 RST 10H --- A range has been specified, get the ending letter
1E1D CD3D1E CALL 1E3DH --- Check for a letter
1E20 D8 RET C --- Syntax error if not a letter
1E21 D641 SUB 41H --- A = 0 - 26(base 10) corresponding to letters
1E23 47 LD B,A --- A thru Z
1E24 D7 RST 10H --- Get next character
1E25 78 LD A,B --- Now, make sure 2nd letter follows 1st
1E26 91 SUB C --- Subtract 1st letter from 2nd
1E27 D8 RET C --- Syntax error if letter range not in ascending
1E28 3C INC A --- A=number of type entries to change :order
1E29 E3 EX (SP),HL --- Clear error addr. Save current code string addr
1E2A 210141 LD HL,4101H --- HL = type table
1E2D 0600 LD B,00H --- B = 00 / value for 1st letter
1E2F 09 ADD HL,BC --- Find next entry in type table
1E30 73 LD (HL),E --- Set data type in type table
1E31 23 INC HL --- Bump to next entry
1E32 3D DEC A --- Count of entries changed
1E33 20FB JR NZ,1E30H --- Loop till range of entries changed
1E35 E1 POP HL --- Restore code string pointer
1E36 7E LD A,(HL) --- and look for more letters
1E37 FE2C CP 2CH --- Test for comma
1E39 C0 RET NZ --- Return if not comma
1E3A D7 RST 10H --- Fetch next element and
1E3B 18CE JR 1E0BH --- go test for a letter
1E3D 7E LD A,(HL) --- Get next element from code string ****************
1E3E FE41 CP 41H --- Compare to an ASCII A
1E40 D8 RET C --- If not a letter
1E41 FE5B CP 5BH --- Compare to an ASCII up-arrow, gives CARRY
1E43 3F CCF --- Set CARRY if not a letter : if a letter
1E44 C9 RET --- NC if a letter
1E45 D7 RST 10H --- Fetch next symbol from input. ********** cont-->
1E46 CD022B CALL 2B02H --- Get value for next expression into cont-->
1E49 F0 RET P --- DE as an integer, set to subscript cont-->
1E4A 1E08 LD E,08H --- FC error if index is negative
1E4C C3A219 JP 19A2H --- Output FC error
1E4F 7E LD A,(HL) --- Get next character ********** ASCII to binary ***
1E50 FE2E CP 2EH --- Check for period abbreviation
1E52 EB EX DE,HL --- DE = current input symbol addr
1E53 2AEC40 LD HL,(40ECH) --- DE = period address
1E56 EB EX DE,HL --- HL = addr of current symbol
1E57 CA781D JP Z,1D78H --- Jmp, period
1E5A 2B DEC HL --- Backspace to current character ***** see note--> *
1E5B 110000 LD DE,0000H --- Initialize accumulation to zero
1E5E D7 RST 10H --- Reprocess previous character
1E5F D0 RET NC --- Return if not a digit
1E60 E5 PUSH HL --- Save current character pointer (digit)
1E61 F5 PUSH AF --- Save digit plus flags from RST 10
1E62 219819 LD HL,1998H --- HL = 6552
1E65 DF RST 18H --- Is accumulated value > 6552
1E66 DA9719 JP C,1997H --- SN error if value > 6552
1E69 62 LD H,D --- No, continue
1E6A 6B LD L,E --- Move current value to HL

220

1E3D * ***

1E45 * Called when evaluating A ************************************
: Subscript for a variable reference
: evaluation if value positive

1E4F * ***

1E5A * Start at . pt & work backwards ********* ASCII to binary ****

221

1E6B 19 ADD HL,DE --- DE * 2
1E6C 29 ADD HL,HL --- DE * 4
1E6D 19 ADD HL,DE --- DE * 5
1E6E 29 ADD HL,HL --- HE = DE * 10(base 10)
1E6F F1 POP AF --- Get last ASCII digit
1E70 D630 SUB 30H --- Convert it to binary
1E72 5F LD E,A --- and save in E register
1E73 1600 LD D,00H --- DE = 0000 thru 0009 (binary equiv of digit)
1E75 19 ADD HL,DE --- Add latest digit to total so far
1E76 EB EX DE,HL --- DE = 10(base 10) * DE + A
1E77 E1 POP HL --- Restore ptr to next digit
1E78 18E4 JR 1E5EH --- Process next digit
1E7A CA611B JP Z,1B61H --- Jmp if no byte count *********** CLEAR routine ***
1E7D CD461E CALL 1E46H --- Get number of bytes into DE
1E80 2B DEC HL --- Backspace code string addr
1E81 D7 RST 10H --- Examine next char in input stream
1E82 C0 RET NZ --- Exit if not end of line
1E83 E5 PUSH HL --- Save current code string ptr
1E84 2AB140 LD HL,(40B1H) --- Top of memory ptr into HL
1E87 7D LD A,L --- DE = no. of bytes to reserve for string
1E88 93 SUB E --- Subtract LSB of n from top of mem. ptr
1E89 5F LD E,A --- Save diff of LSB's
1E8A 7C LD A,H --- Get MSB of top of memory ptr
1E8B 9A SBC A,D --- Subtract MSB of n from top of mem. ptr
1E8C 57 LD D,A --- Save diff in D
1E8D DA7A19 JP C,197AH --- OM error if trying to clear more bytes than
1E90 2AF940 LD HL,(40F9H) --- HL = end of pgm ptr : available
1E93 012800 LD BC,0028H --- BC = min. amt of variable space needed
1E96 09 ADD HL,BC --- Plus end of pgm ptr gives earliest string area
1E97 DF RST 18H --- Compare to start of string area addr
1E98 D27A19 JP NC,197AH --- OM error if string list overlays variable list
1E9B EB EX DE,HL --- HL = new start of string area addr
1E9C 22A040 LD (40A0H),HL --- Load start of string ptr
1E9F E1 POP HL --- Restore code string ptr
1EA0 C3611B JP 1B61H --- Join common code at RUN subroutine
1EA3 CA5D1B JP Z,1B5DH --- Jmp if no line specified ******* RUN routine ****
1EA6 CDC741 CALL 41C7H --- DOS Exit (JP 5F78)
1EA9 CD611B CALL 1B61H --- Go initialize RUN time variables
1EAC 011E1D LD BC,1D1EH --- Continuation addr in execution driver :number
1EAF 1810 JR 1EC1H --- Use GOTO code to begin execution at specified line
1EB1 0E03 LD C,03H --- Make sure there are at least *** GOSUB routine ***
1EB3 CD6319 CALL 1963H --- 6 bytes of available memory
1EB6 C1 POP BC --- BC = rtn addr in execution driver
1EB7 E5 PUSH HL --- Save code string addr
1EB8 E5 PUSH HL --- and create a hole which will be filled later
1EB9 2AA240 LD HL,(40A2H) --- HL = binary value for current line no.
1EBC E3 EX (SP),HL --- Store in hole on stack. Restore code string
1EBD 3E91 LD A,91H --- Save a 145 on stack :pointer
1EBF F5 PUSH AF --- as a GOSUB marker
1EC0 33 INC SP --- Backspace stack ptr over status flags
1EC1 C5 PUSH BC --- Save rtn addr in execution driver. Use GOTO code
1EC2 CD5A1E CALL 1E5AH --- Get line no. to branch to in DE **** GOTO routine*
1EC5 CD071F CALL 1F07H --- Skip to end of this line
1EC8 E5 PUSH HL --- Save code string addr, next line
1EC9 2AA240 LD HL,(40A2H) --- HL = binary equivalent of last line no.
1ECC DF RST 18H --- Compare target line no.
1ECD E1 POP HL --- With current line no.
1ECE 23 INC HL --- Restore code string addr
1ECF DC2F1B CALL C,1B2FH --- Target line is forward : Locate line # speci-
1ED2 D42C1B CALL NC,1B2CH --- Target line is backwards : fied in DE

222

lE7A * ***

1EA3 * **

1EB1 * **

1EC2 * **

223

1ED5 60 LD H,B --- On exit BC = addr of requested line no.
1ED6 69 LD L,C --- Move addr of target line code string to HL
1ED7 2B DEC HL --- Backspace to start of line
1ED8 D8 RET C --- Rtn to execution driver. Start executing new line
1ED9 1E0E LD E,0EH --- UL error. Line number not found
1EDB C3A219 JP 19A2H --- Output UL error message
1EDE C0 RET NZ --- Syntax error if RETURN XX *** RETURN routine *****
1EDF 16FF LD D,0FFH --- Set DE to dummy addr for search routine cont -->
1EE1 CD3619 CALL 1936H --- Backspace stack ptr 4 bytes. Load value into A
1EE4 F9 LD SP,HL --- Set stack ptr to backspaced addr
1EE5 22E840 LD (40E8H),HL --- Save backspacd stack addr
1EE8 FE91 CP 91H --- And look for GOSUB marker
1EEA 1E04 LD E,04H --- RG error if RETURN without GOSUB
1EEC C2A219 JP NZ,19A2H --- Print error message
1EEF E1 POP HL --- HL = binary line no. of GOSUB call
1EF0 22A240 LD (40A2H),HL --- Save as current line no.
1EF3 23 INC HL --- Bump to next line
1EF4 7C LD A,H --- Make sure line no. has not
1EF5 B5 OR L --- overflowed
1EF6 2007 JR NZ,1EFFH --->: Jmp if no overflow
1EF8 3ADD40 LD A,(40DDH) -- : Else we may have a one line pgm
1EFB B7 OR A -- : Get INPUT PHASE flag and test it
1EFC C2181A JP NZ,1A18H -- : Jmp if still in INPUT PHASE
1EFF 211E1D LD HL,1D1EH <---: HL = rtn addr in execution driver
1F02 E3 EX (SP),HL --- Save on stack. HL=code string addr of GOSUB call
1F03 3EE1 LD A,0E1H --- 1F04: POP HL Now scan to end of GOSUB cont-->
1F05 013A0E LD BC,0E3AH --- ********************************** DATA routine
1F08 00 NOP --- 1F07 LD C,00 Set stop scan char to 00
1F09 0600 LD B,00H --- B =00
1F0B 79 LD A,C <---: Save original stop scan char
1F0C 48 LD C,B • : Reset stop scan char to 00
1F0D 47 LD B,A • : B = stop scan value
1F0E 7E LD A,(HL) <---:-: Get an element from code string
1F0F B7 OR A • : : Test for end of line
1F10 C8 RET Z • : : Exit if end of line
1F11 B8 CP B • : : Test for stop scan char
1F12 C8 RET Z • : : Exit if stop scan encountered
1F13 23 INC HL • : : Bump to next element on code string
1F14 FE22 CP 22H • : : Test for quote
1F16 28F3 JR Z,1F0BH --->: : If quote, reset stop scan value to (00)
1F18 D68F SUB 8FH • : Not quote, test for IF token
1F1A 20F2 JR NZ,1F0EH ----->: Jump if not 'IF' token
1F1C B8 CP B -- : A = 0, if B = 0 then CARRY = 0 and
1F1D 8A ADC A,D -- : Add instr does not change value of D,
1F1E 57 LD D,A -- : if B <>, then CARRY = 1 and D is
1F1F 18ED JR 1F0EH ----->: bumped by one loop.
1F21 CD0D26 CALL 260DH --- Get addr of variable into DE *** LET routine *****
1F24 CF RST 08H --- Test if par name followed by = , if not error
1F25 D5 PUSH DE --- 1F25: DC D5 '='
1F26 EB EX DE,HL --- Addr of variable name to HL
1F27 22DF40 LD (40DFH),HL --- Save addr of assignment variable
1F2A EB EX DE,HL --- Restore addr of next input of variable to HL
1F2B D5 PUSH DE --- Save addr of variable
1F2C E7 RST 20H --- Determine data type
1F2D F5 PUSH AF --- Save type/flags. see note-->
1F2E CD3723 CALL 2337H --- Evaluate expression. Save result as current
1F31 F1 POP AF --- Restore data to parity A :variable
1F32 E3 EX (SP),HL --- Push current code sting addr onto stack. cont-->
1F33 C603 ADD A,03H --- Restore data to 2-I, 3-ST, 4-SN, 8-DB
1F35 CD1928 CALL 2819H --- Convert result to proper mode

224

1EDE * **
1EDF : and A - 1 for scan routine

1F03 : statement & rtn to execution driver
1F05 * Set stop scan char to : *************************************

: Search code string until an end
: if line (00) is found or a stop
: scan value of (00) or (:) occurs
: For quotes or 'IF' tokens perform
: he following
: quote - unconditionally reset
: stop scan char to (00)
: IF token -
: stop scan char = 00 -
: do nothing
: stop scan char = : -
: increment D - reg by
: one

1F21 * ***

1F2D : A = -1(integer), 0(string), 1(single), 5(double)

1F32 : HL = addr of variable

225

1F38 CD030A CALL 0A03H --- Move result to 'current' value area
1F3B E5 PUSH HL --- Save addr of variable
1F3C 2028 JR NZ,1F66H --- Jmp if result is not string
1F3E 2A2141 LD HL,(4121H) --- HL = Pointer to string entry
1F41 E5 PUSH HL --- Save it on stack
1F42 23 INC HL --- Skip over length
1F43 5E LD E,(HL) --- E = LSB of string addr
1F44 23 INC HL --- Bump to MSB of addr
1F45 56 LD D,(HL) --- D = MSB of string addr
1F46 2AA440 LD HL,(40A4H) --- HL = start of pgm ptr
1F49 DF RST 18H --- Compare stack of pgm ptr to addr of string
1F4A 300E JR NC,1F5AH --- Jmp if string precedes program :variable
1F4C 2AA040 LD HL,(40A0H) --- HL = string data ptr
1F4F DF RST 18H --- Compare string addr to lower boundary of string
1F50 D1 POP DE --- DE = addr of string pointer : area
1F51 300F JR NC,1F62H --- Jmp if not in string area
1F53 2AF940 LD HL,(40F9H) --- HL = end of pgm ptr
1F56 DF RST 18H --- Compare string addr to end addr of PST
1F57 3009 JR NC,1F62H --- Jmp if string is a literal in the program
1F59 3ED1 LD A,0D1H --- 1F5A: POP DE DE = pointer to string entry
1F5B CDF529 CALL 29F5H --- Backspace to prior literal string pool entry
1F5E EB EX DE,HL --- DE = address of string entry in string list area
1F5F CD4328 CALL 2843H --- Move string to permanent string area
1F62 CDF529 CALL 29F5H --- Backspace lit. string pool table one entry
1F65 E3 EX (SP),HL --- Load ptr to string entry from stack
1F66 CDD309 CALL 09D3H --- Move answer to assigned variable location
1F69 D1 POP DE --- DE = addr of assigned variable
1F6A E1 POP HL --- HL = code string address
1F6B C9 RET --- Rtn to caller
1F6C FE9E CP 9EH --- Test token for 'ERROR' **** ON routine ***********
1F6E 2025 JR NZ,1F95H --- Jmp if not ON ERROR
1F70 D7 RST 10H --- Examine next char in input buffer **** ON ERROR **
1F71 CF RST 08H --- Test if it is a '8D'
1F72 8D ADC A,L --- if it is then GO TO token
1F73 CD5A1E CALL 1E5AH --- Convert following constant to binary. Result in DE
1F76 7A LD A,D --- Test if ON ERROR GOTO 0000 Clear ON ERROR
1F77 B3 OR E --- Combine LSB & MSB of addr :condition
1F78 2809 JR Z,1F83H --- Jmp if GOTO addr is zero
1F7A CD2A1B CALL 1B2AH --- Locate address of line # in basic pgm list
1F7D 50 LD D,B --- Move addr of basic stmt to DE
1F7E 59 LD E,C --- E = LSB of addr
1F7F E1 POP HL --- HL = current position in input stream. cont-->
1F80 D2D91E JP NC,1ED9H --- UL error if line number not found
1F83 EB EX DE,HL --- HL = addr of basic line to GOTO. cont-->
1F84 22F040 LD (40F0H),HL --- 40F0 = addr of statement to resume execution at
1F87 EB EX DE,HL --- Restore code string addr to HL
1F88 D8 RET C --- Rtn to execution driver if not GOTO 0000, else
1F89 3AF240 LD A,(40F2H) --- Get error message override all :fall thru
1F8C B7 OR A --- Set status flags
1F8D C8 RET Z --- Rtn to execution driver if override flag not set
1F8E 3A9A40 LD A,(409AH) --- else get error code
1F91 5F LD E,A --- & move it to E register
1F92 C3AB19 JP 19ABH --- Go to error routine
1F95 CD1C2B CALL 2B1CH --- Get n value into DE ******************************
1F98 7E LD A,(HL) --- A = next token from code string
1F99 47 LD B,A --- Save token : ON n GOTO
1F9A FE91 CP 91H --- Test for GOSUB token : ON n GOSUB
1F9C 2803 JR Z,1FA1H --- Jump if 'ON n GOSUB'
1F9E CF RST 08H --- Test for GOTO token
1F9F 8D ADC A,L --- DC '8D' - GOTO token

226

1F6C * ***

1F70 * ***

1F7F : HL was saved in 1B2A

1F83 : DE = position in current line

1F95 * ***

227

1FA0 2B DEC HL --- Backspace code string pointer to GOTO token
1FA1 4B LD C,E --- C = n value from ON n
1FA2 0D DEC C <---: Decrement n
1FA3 78 LD A,B • : A = GOSUB or GOTO token
1FA4 CA601D JP Z,1D60H • : We have skipped n lines rtn to execution driver
1FA7 CD5B1E CALL 1E5BH • : Get line no. to GOTO into DE as a binary number
1FAA FE2C CP 2CH • : Look for comma following line number else it's
1FAC C0 RET NZ • : Return if no comma : end of stmt
1FAD 18F3 JR 1FA2H --->: Loop till n line numbers have been skipped
1FAF 11F240 LD DE,40F2H --- Get addr of error flag ******* RESUME routine ****
1FB2 1A LD A,(DE) --- Load error flag (FF if error, zero otherwise)
1FB3 B7 OR A --- Set status flag
1FB4 CAA019 JP Z,19A0H --- Error if resume executed w/o error
1FB7 3C INC A --- Set error flag to zero
1FB8 329A40 LD (409AH),A --- Save it
1FBB 12 LD (DE),A --- Reset error flag
1FBC 7E LD A,(HL) --- Get next element from code string
1FBD FE87 CP 87H --- Test for NEXT token
1FBF 280C JR Z,1FCDH --->: Jump if 'RESUME NEXT'
1FC1 CD5A1E CALL 1E5AH -- : Get binary equiv. of line no. into DE
1FC4 C0 RET NZ -- : Rtn to EXECUTION DRIVER if no line number
1FC5 7A LD A,D -- : Combine LSB and MSB of
1FC6 B3 OR E -- : line number and test for 0
1FC7 C2C51E JP NZ,1EC5H -- : Continue at GOTO if RESUME XXXX
1FCA 3C INC A -- : Else RESUME 0. Set A = 1 to signal resume 0
1FCB 1802 JR 1FCFH ----:>: Jmp to RESUME 0 code
1FCD D7 RST 10H <---: : RESUME NEXT test for multiple stmt
1FCE C0 RET NZ -- : Rtn to execution driver if :, else fall thru
1FCF 2AEE40 LD HL,(40EEH) <-----: to get addr. of cont--> **** RESUME 0 *****
1FD2 EB EX DE,HL --- Save in DE
1FD3 2AEA40 LD HL,(40EAH) --- 40EA = line no. of statement following error
1FD6 22A240 LD (40A2H),HL --- Which is where we will resume execution
1FD9 EB EX DE,HL --- Restore addr. of current pos. in line cont-->
1FDA C0 RET NZ --- Go to EXECUTION DRIVER if RESUME 0
1FDB 7E LD A,(HL) --- Else, we have a RESUME NEXT
1FDC B7 OR A --- Test for end of line
1FDD 2004 JR NZ,1FE3H --->: Jmp if not end of line
1FDF 23 INC HL -- : End of line, skip over zero byte terminator
1FE0 23 INC HL -- : Skip over
1FE1 23 INC HL -- : Pointer to next statement
1FE2 23 INC HL -- : Skip over line number in binary for
1FE3 23 INC HL <---: line following error
1FE4 7A LD A,D --- DE = line no. of stmt following error
1FE5 A3 AND E --- Test for end of program
1FE6 3C INC A --- Gives 0 if end of program
1FE7 C2051F JP NZ,1F05H --- Not end of pgm. Skip to end of line w/error &
1FEA 3ADD40 LD A,(40DDH) --- Get INPUT PHASE entered flag :continue
1FED 3D DEC A --- Test for INPUT PHASE started
1FEE CABE1D JP Z,1DBEH --- Not started - Go to it
1FF1 C3051F JP 1F05H --- Skip to end of statement before returning
1FF4 CD1C2B CALL 2B1CH --- ERROR routine **** Evaluate n if ERROR n *********
1FF7 C0 RET NZ --- Rtn if not end of statement
1FF8 B7 OR A --- Set status flags for error no.
1FF9 CA4A1E JP Z,1E4AH --- FC error if n is zero
1FFC 3D DEC A --- n = n - 1
1FFD 87 ADD A,A --- n = 2 (n - 1)
1FFE 5F LD E,A --- Save doubled error no. in E
1FFF FE2D CP 2DH --- Compare with 45 (base 10)
2001 3802 JR C,2005H --- Jmp if error no. in range (< +45)
2003 1E26 LD E,26H --- UE error code

228

1FAF * ***

1FCF * curr pos. in line w/error ***********************************

1FD9 : w/error in case we rtn to execution driver

1FF4 * **

229

2005 C3A219 JP 19A2H --- Output error message
2008 110A00 LD DE,000AH --- AUTO routine ** Default starting line no. is 10
200B D5 PUSH DE --- Save starting line number
200C 2817 JR Z,2025H --- No parameters specified, use defaults
200E CD4F1E CALL 1E4FH --- Convert 1st parameter from ASCII to binary
2011 EB EX DE,HL --- Save user specified starting line in HL
2012 E3 EX (SP),HL --- Then exchange it with 10 on the stack
2013 2811 JR Z,2026H --- Jmp if only one parameter specified
2015 EB EX DE,HL --- DE - 10
2016 CF RST 08H --- Test for comma following 1st parameter
2017 2C INC L --- DC 2C ',' comma
2018 EB EX DE,HL --- DE = current code stmt addr
2019 2AE440 LD HL,(40E4H) --- HL = previous auto increment value
201C EB EX DE,HL --- DE = previous value, HL = code string addr
201D 2806 JR Z,2025H --- Jmp if no 2nd parameter
201F CD5A1E CALL 1E5AH --- Convert 2nd parameter - increment value
2022 C29719 JP NZ,1997H --- SN error if NZ
2025 EB EX DE,HL --- HL = auto increment value
2026 7C LD A,H --- Test auto increment
2027 B5 OR L --- for zero
2028 CA4A1E JP Z,1E4AH --- FC error if Z
202B 22E440 LD (40E4H),HL --- Auto increment
202E 32E140 LD (40E1H),A --- Set auto increment flag for BASIC
2031 E1 POP HL --- HL = starting line number
2032 22E240 LD (40E2H),HL --- Current input line number
2035 C1 POP BC --- Clear stack
2036 C3331A JP 1A33H --- Rtn to INPUT PHASE
2039 CD3723 CALL 2337H --- Evaluate expression *************** IF ***********
203C 7E LD A,(HL) --- Was element following
203D FE2C CP 2CH --- Expression a comma
203F CC781D CALL Z,1D78H --- Yes, get next element
2042 FECA CP 0CAH --- And test for 'THEN token
2044 CC781D CALL Z,1D78H --- If 'THEN' token skip ahead so backspace below will
2047 2B DEC HL --- leave us positioned at THEN token, else it leaves
2048 E5 PUSH HL --- us positioned at element following expression
2049 CD9409 CALL 0994H --- Test for true/false condition
204C E1 POP HL --- Restore addr of current position in stmt
204D 2807 JR Z,2056H --->: If zero expression was false, look for ELSE or
204F D7 RST 10H <---:---: end of line. Examine next element in code
2050 DAC21E JP C,1EC2H -- : : If numeric must be GOTO address :stmt string
2053 C35F1D JP 1D5FH -- : : Rtn to execution driver to evaluate rest of
2056 1601 LD D,01H <---: : Count times to scan to end of line * cont ->
2058 CD051F CALL 1F05H <---: : Scan to end of line
205B B7 OR A • : : A = stop scan value
205C C8 RET Z • : : Rtn to BASIC if end of line
205D D7 RST 10H • : : Get next element
205E FE95 CP 95H • : : And test for ELSE token
2060 20F6 JR NZ,2058H --->: : If not ELSE token scan again
2062 15 DEC D • : : Match IF's and ELSE's
2063 20F3 JR NZ,2058H --->: : Loop till all ELSE's passed
2065 18E8 JR 204FH ------->: Execute remainder of statement
2067 3E01 LD A,01H --- A=device code for printer *** LPRINT routine ****
2069 329C40 LD (409CH),A --- Save in current device type loc.
206C C39B20 JP 209BH --- Go analyze rest of statement
206F CDCA41 CALL 41CAH --- DOS Exit (JP 5A15) ********************** PRINT@ **
2072 FE40 CP 40H --- Test next element for @ token
2074 2019 JR NZ,208FH --- Jump if not PRINT@
2076 CD012B CALL 2B01H --- Evaluate @ expression.*** PRINT@ routine *********
2079 FE04 CP 04H --- A = MSB test for @ value > 1023
207B D24A1E JP NC,1E4AH --- FC error if @ position > 1023

230

2008 * ***

2039 * ***

2056 * False path of IF statement **********************************

2067 * ***

206E * ***

2076 * ***

231

207E E5 PUSH HL --- Stack = current code string addr
207F 21003C LD HL,3C00H --- HL = Display area ptr
2082 19 ADD HL,DE --- HL = start of display area + @ position
2083 222040 LD (4020H),HL --- Store cursor position in display DCB
2086 7B LD A,E --- E = position within line
2087 E63F AND 3FH --- Not to exceed 63 and save it as
2089 32A640 LD (40A6H),A --- Update cursor offset
208C E1 POP HL --- Restore code string addr (pointer to item list)
208D CF RST 08H --- Make sure a , follows @ expression
208E 2C INC L --- DC 2C ','
208F FE23 CP 23H --- Look for # token
2091 2008 JR NZ,209BH --- Jmp if not PRINT#
2093 CD8402 CALL 0284H --- Analyze rest of string ****** PRINT # ** cont--> *
2096 3E80 LD A,80H --- Set write to cassette flag
2098 329C40 LD (409CH),A --- Cassette flag (= -1)
209B 2B DEC HL --- Backspace over previous symbol in input stream ***
209C D7 RST 10H --- Re-examine next char in input stream
209D CCFE20 CALL Z,20FEH --- If zero print a CR (end of statement) cont-->
20A0 CA6921 JP Z,2169H --- Write sync bytes if PRINT, clear output
20A3 FEBF CP 0BFH --- Device flag (409C), and rtn to execution
20A5 CABD2C JP Z,2CBDH --- Jump if print using :driver
20A8 FEBC CP 0BCH --- Test for TAB token
20AA CA3721 JP Z,2137H --- Jump if print tab
20AD E5 PUSH HL --- Print item list ************* PRINT # ** cont--> *
20AE FE2C CP 2CH --- Test for comma
20B0 CA0821 JP Z,2108H --- If comma, get next item
20B3 FE3B CP 3BH --- Test for semi-colon
20B5 CA6421 JP Z,2164H --- If semicolon
20B8 C1 POP BC --- BC = current addr in input stream
20B9 CD3723 CALL 2337H --- Get addr or value of next item to be printed
20BC E5 PUSH HL --- Save addr of terminal symbol
20BD E7 RST 20H --- Determine data type
20BE 2832 JR Z,20F2H --- If string
20C0 CDBD0F CALL 0FBDH --- Convert binary to ASCII and move to print buffer
20C3 CD6528 CALL 2865H --- Build a literal string pool entry for ASCII number
20C6 CDCD41 CALL 41CDH --- DOS Exit (JP 5B9A)
20C9 2A2141 LD HL,(4121H) --- HL = addr of current print string
20CC 3A9C40 LD A,(409CH) --- A = output device flag
20CF B7 OR A --- Test device type flag
20D0 FAE920 JP M,20E9H --- Jmp if writing to cassette (PRINT#)
20D3 2808 JR Z,20DDH --- Jmp if not LPRINT
20D5 3A9B40 LD A,(409BH) --- A = current line position *** LPRINT continued ***'
20D8 86 ADD A,(HL) --- Add no. chars in new line
20D9 FE84 CP 84H --- and test for line overflow
20DB 1809 JR 20E6H --- Go test results of comparison
20DD 3A9D40 LD A,(409DH) --- Get size of display line *** PRINT ITEM continued *
20E0 47 LD B,A --- Move it to B so we can compare it
20E1 3AA640 LD A,(40A6H) --- Get cursor offset for current line
20E4 86 ADD A,(HL) --- Add length of new line and
20E5 B8 CP B --- compare to maximum line size :line
20E6 D4FE20 CALL NC,20FEH --- If NC, new line will overflow buffer. Skip to new
20E9 CDAA28 CALL 28AAH --- Write line to ****** PRINT# continued ** cont--> *
20EC 3E20 LD A,20H --- A = ASCII space
20EE CD2A03 CALL 032AH --- Print a space. Rtn w/a non-zero
20F1 B7 OR A --- Set status flags
20F2 CCAA28 CALL Z,28AAH --- If current data type is string, write it output
20F5 E1 POP HL --- Restore current code string addr to HL :device
20F6 C39B20 JP 209BH --- and loop till end of statement (E05)
20F9 3AA640 LD A,(40A6H) --- A = cursor offset from current line **** cont--> *
20FC B7 OR A --- Set status flags

232

2093 * Open device ***

209B * ***

209D : Flush line to device

20AD * Save current position in input stream ***********************

20D5 * ***

20DD * ***

20E9 * current output device ***************************************

20F9 * Position video to next line *********************************

233

20FD C8 RET Z --- Exit if at start of a line
20FE 3E0D LD A,0DH --- Else skip to next line
2100 CD2A03 CALL 032AH --- Call video driver
2103 CDD041 CALL 41D0H --- DOS exit (JP 5B99)
2106 AF XOR A --- Clear A-reg status flags/carry flag
2107 C9 RET --- Rtn to caller
2108 CDD341 CALL 41D3H --- DOS Exit (JP 5B65) ****** PRINT on cassette ******
210B 3A9C40 LD A,(409CH) --- Get current output device
210E B7 OR A --- and test for type
210F F21921 JP P,2119H --- Jmp if current device not cassette
2112 3E2C LD A,2CH --- A = ASCII comma
2114 CD2A03 CALL 032AH --- Print comma on printer or display
2117 184B JR 2164H --- Go fetch next char from code string
2119 2808 JR Z,2123H --- Jmp if current device is video display ***********
211B 3A9B40 LD A,(409BH) --- Device is printer. Get current print pos in A
211E FE70 CP 70H --- Compare print pos to 112
2120 C32B21 JP 212BH --- Go test if time for line skip
2123 3A9E40 LD A,(409EH) --- A = line size ************************************
2126 47 LD B,A --- Save in B
2127 3AA640 LD A,(40A6H) --- A = current pos in line
212A B8 CP B --- Test if room in this line. Subtract cont-->
212B D4FE20 CALL NC,20FEH --- No, issue a line skip. We are at end of line
212E 3034 JR NC,2164H --- Jmp if end of line marked
2130 D610 SUB 10H --- Test for at least 10 print positions left
2132 30FC JR NC,2130H --- Loop till positions to within 10 spaces of end of
2134 2F CPL --- Gives - number of blanks to print :line
2135 1823 JR 215AH --- Go print blanks
2137 CD1B2B CALL 2B1BH --- Get TAB no., * PRINT TAB processing **** cont--> *
213A E63F AND 3FH --- Results in A. Do not let it exceed 63
213C 5F LD E,A --- Save TAB value in B
213D CF RST 08H --- Look for closing paren
213E 29 ADD HL,HL --- DC ','
213F 2B DEC HL --- Reposition code string printer to
2140 E5 PUSH HL --- and save addr on stack
2141 CDD341 CALL 41D3H --- DOS Exit (JP 5B65)
2144 3A9C40 LD A,(409CH) --- A = output device type code
2147 B7 OR A --- Test device type code
2148 FA4A1E JP M,1E4AH --- FC error if negative (tape)
214B CA5321 JP Z,2153H -->: Jmp if output device video
214E 3A9B40 LD A,(409BH) -- : A = print position in current line
2151 1803 JR 2156H ---:->: Skip reload of A register
2153 3AA640 LD A,(40A6H) <--: : A = cursor position in current video line
2156 2F CPL <-----: A = -current position
2157 83 ADD A,E --- A = -current position + tab
2158 300A JR NC,2164H --->: Jmp if tab less than current position
215A 3C INC A -- : A = number of blanks to print
215B 47 LD B,A -- : B = count of blanks to print
215C 3E20 LD A,20H -- : A = ASCII blank
215E CD2A03 CALL 032AH <-: : Print a blank
2161 05 DEC B • : : Count it
2162 20FA JR NZ,215EH ->: : Loop till B blanks printed
2164 E1 POP HL <---: Restore position in input string
2165 D7 RST 10H -- Examine next character
2166 C3A020 JP 20A0H --- Process rest of PRINT TAB statement
2169 3A9C40 LD A,(409CH) --- A = device type code ******************* cont--> *
216C B7 OR A --- Test for cassette
216D FCF801 CALL M,01F8H --- Turn off cassette
2170 AF XOR A --- Clear A and status flags
2171 329C40 LD (409CH),A --- and reset current device code to display
2174 CDBE41 CALL 41BEH --- DOS Exit (JP 577C)

234

2108 * ***

2119 * ***

2123 * ***

212A : line size from current position

2137 * evaluate expression **

2169 * Turn off cassette and reset current device to video ********

235

2177 C9 RET --- Rtn to caller
2178 3F CCF --- 7 *************** REDO error message *************
2179 52 LD D,D --- R
217A 45 LD B,L --- E
217B 44 LD B,H --- D
217C 4F LD C,A --- 0
217D 0D DEC C --- Carriage return
217E 00 NOP --- Message terminator
217F 3ADE40 LD A,(40DEH) --- Get read flag ************************** cont--> *
2182 B7 OR A --- Set status flags
2183 C29119 JP NZ,1991H --- SN error in NNN if READ active
2186 3AA940 LD A,(40A9H) --- Get type of input flag
2189 B7 OR A --- Test for zero
218A 1E2A LD E,2AH --- FD error code
218C CAA219 JP Z,19A2H --- Output FD error message if cassette input
218F C1 POP BC --- Clear the stack
2190 217821 LD HL,2178H --- Addr of REDO message
2193 CDA728 CALL 28A7H --- Output REDO message
2196 2AE640 LD HL,(40E6H) --- Restore code string addr
2199 C9 RET --- Rtn to caller
219A CD2828 CALL 2828H --- Check for illegal direct ***** INPUT routine *****
219D 7E LD A,(HL) --- (Input without line number)
219E CDD641 CALL 41D6H --- DOS Exit (JP 5784)
21A1 D623 SUB 23H --- Check for unit designation #
21A3 32A940 LD (40A9H),A --- 40A9 = 0 if INPUT #
21A6 7E LD A,(HL) --- A = next element from code string
21A7 2020 JR NZ,21C9H --->: Jmp if INPUT from console device
21A9 CD9302 CALL 0293H -- : Find leader and sync bytes
21AC E5 PUSH HL -- : Save code string address
21AD 06FA LD B,0FAH -- : B = max no. of bytes to read (250)
21AF 2AA740 LD HL,(40A7H) -- : HL = input area ptr
21B2 CD3502 CALL 0235H <-: : Read 1 byte from tape
21B5 77 LD (HL),A • : : Save byte just read
21B6 23 INC HL • : : Bump to next location in buffer
21B7 FE0D CP 0DH • . : Read into buffer until CR
21B9 2802 JR Z,21BDH • : : Jmp if CR encountered
21BB 10F5 DJNZ 21B2H ->: : Or loop till 250 bytes read
21BD 2B DEC HL -- : Position to last place in buffer
21BE 3600 LD (HL),00H -- : Put a 00H at end and
21C0 CDF801 CALL 01F8H -- : Turn off tape
21C3 2AA740 LD HL,(40A7H) -- : Input buffer addr to HL
21C6 2B DEC HL -- : Backspace one byte
21C7 1822 JR 21EBH -- : And store a comma there so we cont-->
21C9 01DB21 LD BC,21DBH <---: Continuation addr of 21 BD ************ note--> *
21CC C5 PUSH BC --- to stack
21CD FE22 CP 22H --- Look for quote
21CF C0 RET NZ --- Jump to 21DB if not text in input statement
21D0 CD6628 CALL 2866H --- Quote (text in input statement) cont-->
21D3 CF RST 08H --- Look for a trailing semi-colon
21D4 3B DEC SP --- DC = ','
21D5 E5 PUSH HL --- Save code string addr
21D6 CDAA28 CALL 28AAH --- Write prompting message
21D9 E1 POP HL --- Restore code string addr
21DA C9 RET --- Go to 21DB
21DB E5 PUSH HL --- Save code string address *************************
21DC CDB31B CALL 1BB3H --- Print '? ' and accept input on exit cont-->
21DF C1 POP BC --- BC = code string addr
21E0 DABE1D JP C,1DBEH --- Jmp if BREAK key entered
21E3 23 INC HL --- Position to first byte of data in buffer
21E4 7E LD A,(HL) --- Fetch 1st data byte

236

2178 * ***

217E * Output read/input error messages ****************************

219A * ***

21C7 : can use READ processing
21C9 * INPUT item list ***

21D0 : Build lit. string pool entry for quote.

21DB * ***
21DC : HL = buffer addr -1

237

21E5 B7 OR A --- Set status flags
21E6 2B DEC HL --- Backspace to buffer origin -1
21E7 C5 PUSH BC --- Save code string addr
21E8 CA041F JP Z,1F04H --- If 1st data char is binary zeroes, cont-->
21EB 362C LD (HL),2CH --- Make READ think we are at end of a value in a
21ED 1805 JR 21F4H --- DATA statement
21EF E5 PUSH HL --- Save current pos in PST ********* READ routine ***
21F0 2AFF40 LD HL,(40FFH) --- HL = starting addr of data stmt
21F3 F6AF OR 0AFH --- 21F4 XOR A - Zero A - Signal INPUT, non-zero
21F5 32DE40 LD (40DEH),A --- Not 00 if read :signal READ
21F8 E3 EX (SP),HL --- 00 if input HL = rtn addr, stack = DATA addr
21F9 1802 JR 21FDH --->: Join common code
21FB CF RST 08H -- : Test for a comma
21FC 2C INC L -- : 21FC: DC 2C ','
21FD CD0D26 CALL 260DH <---: Get address of current variable into DE
2200 E3 EX (SP),HL --- Pop pointer to current location in data statement
2201 D5 PUSH DE --- Replace it w/ addr of variable
2202 7E LD A,(HL) --- Get next char from data statement
2203 FE2C CP 2CH --- Test for terminal comma
2205 2826 JR Z,222DH --->: Jump if comma
2207 3ADE40 LD A,(40DEH) -- : A = read flag
220A B7 OR A -- : Test if READ or INPUT processing
220B C29622 JP NZ,2296H -- : Jmp if READ - go find next DATA statement
220E 3AA940 LD A,(40A9H) -- : Test whether or not a unit
2211 B7 OR A -- : Number was specified in INPUT call
2212 1E06 LD E,06H -- : OD error - no unit no. given in call
2214 CAA219 JP Z,19A2H -- : Output OD message if no unit specified
2217 3E3F LD A,3FH -- : Print '?' sequence error in data cont-->
2219 CD2A03 CALL 032AH -- : Print ' ' and accept input
221C CDB31B CALL 1BB3H -- : Accept input from keyboard. Buffer addr -1 in HL
221F D1 POP DE -- : DE = address of next variable
2220 C1 POP BC -- : BC = addr of next element in code string
2221 DABE1D JP C,1DBEH -- : Jmp if BREAK key during input
2224 23 INC HL -- : Position to first data byte in buffer
2225 7E LD A,(HL) -- : Fetch 1st data byte
2226 B7 OR A -- : Set status flags
2227 2B DEC HL -- : Backspace buffer pointer to buffer origin -1
2228 C5 PUSH BC -- : Save code string address
2229 CA041F JP Z,1F04H -- : No data in buffer skip to end of cont-->
222C D5 PUSH DE -- : Save addr of variable
222D CDDC41 CALL 41DCH <---: DOS Exit (JP 5E63)
2230 E7 RST 20H --- Test data type
2231 F5 PUSH AF --- Save status from data type test
2232 2019 JR NZ,224DH --- Go convert data to binary, SP, or DP
2234 D7 RST 10H --- Else we have string data. Examine next char in
2235 57 LD D,A --- DATA statement
2236 47 LD B,A --- Save nest char in B, D
2237 FE22 CP 22H --- Test for quote
2239 2805 JR Z,2240H --- Jmp if its a quote - string data
223B 163A LD D,3AH --- Else scan DATA statement looking
223D 062C LD B,2CH --- for a : or , and build a literal
223F 2B DEC HL --- string pool entry for it
2240 CD6928 CALL 2869H --- Create a literal string pool entry for DATA string
2243 F1 POP AF --- A = flag for destination data type
2244 EB EX DE,HL --- Save HL
2245 215A22 LD HL,225AH --- Put continuation addr of 225A onto stack
2248 E3 EX (SP),HL --- and clear stack
2249 D5 PUSH DE --- Save addr of variable
224A C3331F JP 1F33H --- move result to target variable, continue at 225A
224D D7 RST 10H --- Examine next character in DATA stream ** cont--> *

238

21EB : skip to end of line & rtn to BASIC

21EF * ***

2217 : while processing INPUT statement

2229 : this line & rtn to BASIC

224D * Convert next value in DATA stmt from ASCII to binary ********

239

224E F1 POP AF --- Reload flags from data type test
224F F5 PUSH AF --- and resave. Push rtn addr of 2243 onto stack
2250 014322 LD BC,2243H --- to be returned to following DATA conversion
2253 C5 PUSH BC --- 2243 to stack
2254 DA6C0E JP C,0E6CH --- Go convert ASCII to binary - not DP
2257 D2650E JP NC,0E65H --- Go convert ASCII to binary - DP
225A 2B DEC HL --- Backspace one character in DATA stmt *************
225B D7 RST 10H --- Examine terminating character
225C 2805 JR Z,2263H --->: Jmp if end of line
225E FE2C CP 2CH --- : Not end of line, test for a comma
2260 C27F21 JP NZ,217FH <---: If not a comma go output error message
2263 E3 EX (SP),HL --- HL = next byte in read stmt, stack = next in DATA
2264 2B DEC HL --- Backspace over terminal character :stmt
2265 D7 RST 10H --- and reexamine it. If non-zero it must be a
2266 C2FB21 JP NZ,21FBH --- comma. Go process next variable
2269 D1 POP DE --- Clear stack
226A 3AA940 LD A,(40A9) --- Check for FD error
226D B7 OR A --- Set status flags
226E C8 RET Z --- No error, rtn to BASIC
226F 3ADE40 LD A,(40DEH) --- Get READ/INPUT flag
2272 B7 OR A --- Set status flags
2273 EB EX DE,HL --- DE = code string addr
2274 C2961D JP NZ,1D96H --- Jmp if READ error
2277 D5 PUSH DE --- Save code string addr. Test for INPUT error
2278 CDDF41 CALL 41DFH --- DOS Exit (JP 579C)
227B B6 OR (HL) --- Test for end of input
227C 218622 LD HL,2286H --- EXTRA IGNORED message
227F C4A728 CALL NZ,28A7H --- Output message if not end of INPUT
2282 E1 POP HL --- Restore code string addr
2283 C36921 JP 2169H --- Turn off cassette, reset output to cont-->
2286 3F CCF --- EXTRA IGNORED ***********************************
2287 45 LD B,L --- E
2288 78 LD A,B --- X
2289 74 LD (HL),H --- R
228A 72 LD (HL),D --- T
228B 61 LD H,C --- A
228C 2069 JR NZ,22F7H --- Space I
228E 67 LD H,A --- G
228F 6E LD L,(HL) --- N
2290 6F LD L,A --- 0
2291 72 LD (HL),D --- R
2292 65 LD H,L --- E
2293 64 LD H,H --- D
2294 0D DEC C --- CR
2295 00 NOP --- Message terminator
2296 CD051F CALL 1F05H --- Search for next data statement *** Call DATA *****
2299 B7 OR A --- Scan to end of current DATA line
229A 2012 JR NZ,22AEH --- Jmp if : terminated line
229C 23 INC HL --- Skip over address of next BASIC statement
229D 7E LD A,(HL) --- Get line number for next
229E 23 INC HL --- statement. If its zero, then we've reached
229F B6 OR (HL) --- the end of the program
22A0 1E06 LD E,06H --- OD error if end of program reached before next
22A2 CAA219 JP Z,19A2H --- data statement found
22A5 23 INC HL --- Bump to line no. this line
22A6 5E LD E,(HL) --- and load it into DE
22A7 23 INC HL --- Bump to MSB of line no.
22A8 56 LD D,(HL) --- DE = binary line no. this statement
22A9 EB EX DE,HL --- HL = code string for DATA statement
22AA 22DA40 LD (40DAH),HL --- Save binary line no. of DATA statement

240

225A * ***

2283 : video & ret to BASIC
2286 * ***

2296 * ***

241

22AD EB EX DE,HL --- Restore BASIC statement addr to HL cont-->
22AE D7 RST 10H --- Examine next token
22AF FE88 CP 88H --- Test for DATA token
22B1 20E3 JR NZ,2296H --- Jump if not data token keep looking cont-->
22B3 C32D22 JP 222DH --- Locate next DATA statement, continue
22B6 110000 LD DE,0000H --- In case no index specified **** NEXT routine *****
22B9 C40D26 CALL NZ,260DH --- If index given, get its addr into DE
22BC 22DF40 LD (40DFH),HL --- Save current code string addr
22BF CD3619 CALL 1936H --- Locate FOR push on stack, on exit cont-->
22C2 C29D19 JP NZ,199DH --- NF error if no FOR push
22C5 F9 LD SP,HL --- Set stack ptr to addr of type/sign push for STEP
22C6 22E840 LD (40E8H),HL --- Save CSP in 40E8 :value
22C9 D5 PUSH DE --- Save addr of index. Overwrite addr of FOR index
22CA 7E LD A,(HL) --- A = sign flag of increment
22CB 23 INC HL --- Skip over adj. type flag
22CC F5 PUSH AF --- Save sign flag
22CD D5 PUSH DE --- DE = addr of index
22CE 7E LD A,(HL) --- A = adj. type flag for STEP increment = cont-->
22CF 23 INC HL --- Backspace to end of STEP increment
22D0 B7 OR A --- Test adj. type flag for STEP increment
22D1 FAEA22 JP M,22EAH --->: Jmp if integer type
22D4 CDB109 CALL 09B1H -- : Load STEP increment from stack cont-->
22D7 E3 EX (SP),HL -- : HL = addr of index. Stack = end addr of TO limit
22D8 E5 PUSH HL -- : Save addr of index
22D9 CD0B07 CALL 070BH -- : Load index into BC/DE and add to current value
22DC E1 POP HL -- : Restore addr of index to HL
22DD CDCB09 CALL 09CBH -- : Move current value (new index) to its addr
22E0 E1 POP HL -- : HL = ending addr of TO limit
22E1 CDC209 CALL 09C2H -- : Load TO value into BC/DE
22E4 E5 PUSH HL -- : Save addr of ptr to binary line no for FOR stmt
22E5 CD0C0A CALL 0A0CH -- : Compare TO value in BC/DE with new cont-->
22E8 1829 JR 2313H -- : Go examine results of comparison
22EA 23 INC HL <---: Backspace stack 4 bytes ************************
22EB 23 INC HL --- which skips over the area for
22EC 23 INC HL --- single precision TO value.
22ED 23 INC HL --- Prepare to fetch an integer increment
22EE 4E LD C,(HL) --- C = LSB of increment
22EF 23 INC HL --- Bump to MSB
22F0 46 LD B,(HL) --- B = MSB of increment
22F1 23 INC HL --- HL = stack addr of TO limit
22F2 E3 EX (SP),HL --- HL = addr of index. Stack = ending addr of TO limit
22F3 5E LD E,(HL) --- E = LSB of index :on stack
22F4 23 INC HL --- Bump to MSB
22F5 56 LD D,(HL) --- D = MSB of index
22F6 E5 PUSH HL --- Save addr of MSB of index
22F7 69 LD L,C --- L = LSB of increment
22F8 60 LD H,B --- H = MSB of increment
22F9 CDD20B CALL 0BD2H --- Add value in DE to HL. Sum in HL if integer.
22FC 3AAF40 LD A,(40AFH) --- Get data type flag :index + increment
22FF FE04 CP 04H --- Test for single precision
2301 CAB207 JP Z,07B2H --- OV error if single precision
2304 EB EX DE,HL --- DE = new index value
2305 E1 POP HL --- HL = addr of index in variable area
2306 72 LD (HL),D --- Save MSB of new index
2307 2B DEC HL --- Skip down to LSB
2308 73 LD (HL),E --- Save LSB of new index
2309 E1 POP HL --- HL = addr of TO value in FOR push
230A D5 PUSH DE --- Save new index
230B 5E LD E,(HL) --- E = LSB of TO value
230C 23 INC HL --- Bump to MSB

242

22AD : may be in DATA statement

22B1 : till DATA or end of pgm

22B6 * ***

22BF : HL = stack addr of type (adj)/sign flag

22CE : +1 if single precision, -1 if integer

224D : Save as current value

22E5 : index in current value

22EA * ***

243

230D 56 LD D,(HL) --- D = MSB of TO value
230E 23 INC HL --- Bump to addr of line number
230F E3 EX (SP),HL --- HL = TO value , save addr of line no. on stack
2310 CD390A CALL 0A39H --- Compare new index to limit
2313 E1 POP HL --- HL = addr of binary line no. of FOR stmt
2314 C1 POP BC --- BC = sign flag of index
2315 90 SUB B --- Compare sign of comparison w/sign expected
2316 CDC209 CALL 09C2H --- Load BC = addr of 1st stmt in loop. cont-->
2319 2809 JR Z,2324H --->: Jmp if index <> to limit
231B EB EX DE,HL -- : HL = binary line no of FOR stmt
231C 22A240 LD (40A2H),HL -- : Save line no. Of FOR stmt
231F 69 LD L,C -- : Move LSB of 1st loop stmt
2320 60 LD H,B -- : Move MSB of 1st loop stmt
2321 C31A1D JP 1D1AH -- : Continue execution. Restore FOR cont-->
2324 F9 LD SP,HL <---: Restore stack pointer ************* see note--> *
2325 22E840 LD (40E8H),HL --- And save in 40EB
2328 2ADF40 LD HL,(40DFH) --- HL = Code string addr after NEXT I
232B 7E LD A,(HL) --- Get next token
232C FE2C CP 2CH --- Compare with a comma
232E C21E1D JP NZ,1D1EH --- Jump if not comma
2331 D7 RST 10H --- Position to next index
2332 CDB922 CALL 22B9H --- Re-enter and execute NEXT
2335 CF RST 08H --- Test for left paren in input stream
2336 282B JR Z,2363H --- 2336: DC 28 Left paren
2338 1600 LD D,00H --- 2337: DEC HL
233A D5 PUSH DE --- D = precedence value, E = operator token
233B 0E01 LD C,01H --- Number of bytes of free memory required
233D CD6319 CALL 1963H --- Check limits of free memory
2340 CD9F24 CALL 249FH --- Get value of next element in expression cont-->
2343 22F340 LD (40F3H),HL --- Addr of next token
2346 2AF340 LD HL,(40F3H) --- Re-entry point following a reduction
2349 C1 POP BC --- BC = DE = precedence value last cont-->
234A 7E LD A,(HL) --- Get next token (operator or function)
234B 1600 LD D,00H --- Clear relational token flag encountered
234D D6D4 SUB 0D4H <-----: Test for arithmetic or relational operator
234F 3813 JR C,2364H --->: : Operator +, -, *, /,up arrow, AND, OR
2351 FE03 CP 03H --- : : Test for >, =, < token
2353 300F JR NC,2364H --->: : Jmp token SGN - MID$
2355 FE01 CP 01H --- : : Set CARRY if >. Test for <=, >= sequence
2357 17 RLA --- : : Adjusted token gives 1(>), 2(=), 4(<)
2358 AA XOR D --- : : Test for permissible combinations <=, =>
2359 BA CP D --- : : by combining previous adjusted token
235A 57 LD D,A --- : : with current adjusted token. cont-->
235B DA9719 JP C,1997H --- : : Error if << , >>, or ==
235E 22D840 LD (40D8H),HL --- : : Addr of <, -, or > token to 40D8
2361 D7 RST 10H --- : : Get next token
2362 18E9 JR 234DH ----:-: Two relationals to be treated as one
2364 7A LD A,D <---: Get relational operator flag
2365 B7 OR A --- Set status flags then
2366 C2EC23 JP NZ,23ECH --- Jmp if <, =, or > token previously encountered
2369 7E LD A,(HL) --- A = operator token
236A 22D840 LD (40D8H),HL --- Addr of arithmetic operator to 40D8
236D D6CD SUB 0CDH --- Test for arithmetic token
236F D8 RET C --- Return if token not arithmetic
2370 FE07 CP 07H --- Test for + through OR token
2372 D0 RET NC --- Rtn if token > through MID$
2373 5F LD E,A --- E = 0 - 7
2374 3AAF40 LD A,(40AFH) --- Get type flag for current variable
2377 D603 SUB 03H --- -1(int), 0(str), 1(sng), 5(dbl)
2379 B3 OR E --- Combine op token & type so we can test for

244

2316 : DE = binary line no. of FOR stmnt

2321 : token and GAP for FOR.
2324 * Start of expression evaluation ******************************

2340 : If var : addr to 4121, if const : value to 4127

2349 : operand/last operator token
* - < = >
* - 4 2 1

* < 4 0 6 5

* = 2 6 0 7

* > 1 5 3 0

*
* Relational Table

235A : Combination must be greater than previous value

* E TOKEN

*
* 0 +
* 1 -
* 2 *
* 3 /
* 4 @@
* 5 AND
* 6 OR

245

237A CA8F29 JP Z,298FH --- String addition
237D 219A18 LD HL,189AH --- Table of precedent operator values
2380 19 ADD HL,DE --- Add local token (0 - 7)
2381 78 LD A,B --- Compute addr for this operator
2382 56 LD D,(HL) --- Get precedence value for last operator
2383 BA CP D --- Get precedent value for this operator
2384 D0 RET NC --- Exit if this operator has higher operator
2385 C5 PUSH BC --- Precedence value last operator/token last operator
2386 014623 LD BC,2346H --- Resumption addr in case break in precedence
2389 C5 PUSH BC --- To stack
238A 7A LD A,D --- A = precedence value for this operator
238B FE7F CP 7FH --- Test for exponential
238D CAD423 JP Z,23D4H --- Jmp if exponential
2390 FE51 CP 51H --- Test for LOGICAL operators
2392 DAE123 JP C,23E1H --- Jmp if AND/OR
2395 212141 LD HL,4121H --- HL = addr of binary value for 1st operand
2398 B7 OR A --- Clear status flags
2399 3AAF40 LD A,(40AFH) --- Get data type
239C 3D DEC A --- Minus 1 : -1(int), 0(str), 1(sng), 5(dbl)
239D 3D DEC A --- Minus 2
239E 3D DEC A --- Minus 3
239F CAF60A JP Z,0AF6H --- TM error if Z (string)
23A2 4E LD C,(HL) --- Now, load binary value of operator
23A3 23 INC HL --- C = LSB of value. Bump to MSB
23A4 46 LD B,(HL) --- BC = binary value
23A5 C5 PUSH BC --- Save binary value
23A6 FAC523 JP M,23C5H --- Jump if integer operand saved
23A9 23 INC HL --- Else get rest of value
23AA 4E LD C,(HL) --- Into BC and save it on stack also
23AB 23 INC HL --- C = MSB of SP value
23AC 46 LD B,(HL) --- B = exponent of SP value
23AD C5 PUSH BC --- Save rest of digit
23AE F5 PUSH AF --- Save type -3
23AF B7 OR A --- Reset status flags so we can test for DP value
23B0 E2C423 JP PO,23C4H --->: Jump if not double precision
23B3 F1 POP AF -- : Clear stack
23B4 23 INC HL -- : Bump to next byte of value
23B5 3803 JR C,23BAH -->:: Jmp if rem. of value not in WRA1
23B7 211D41 LD HL,411DH -- :: Reset HL to start of WRA1
23BA 4E LD C,(HL) <--:: Load rest of double precision
23BB 23 INC HL -- :value and save on stack
23BC 46 LD B,(HL) -- : B = next most LSB
23BD 23 INC HL -- : Bump to next digit
23BE C5 PUSH BC -- : Save LSB/NMSB of DP value
23BF 4E LD C,(HL) -- : then load
23C0 23 INC HL -- : Middle bytes of
23C1 46 LD B,(HL) -- : DP value in BC
23C2 C5 PUSH BC -- : and save on stack
23C3 06F1 LD B,0F1H <---: 23C4: POP AF Clear type -3/status push
23C5 C603 ADD A,03H --- A = type
23C7 4B LD C,E --- Token for arithmetic operator (0 - 7)
23C8 47 LD B,A --- Plus length of operand
23C9 C5 PUSH BC --- Follow operand on stack
23CA 010624 LD BC,2406H --- Addr for reordering operations
23CD C5 PUSH BC --- To stack
23CE 2AD840 LD HL,(40D8H) --- Restore HL to addr of last token encountered
23D1 C33A23 JP 233AH --- Note DE = precedence value/operator value (0 - 7)
23D4 CDB10A CALL 0AB1H --- Convert integer (4121-4122) to SP ****** cont--> *
23D7 CDA409 CALL 09A4H --- Move a SP no. from 4121-4124 to stack
23DA 01F213 LD BC,13F2H --- Addr of SP exponential routine

246

23D4 * and store in 4121 - 4124 ************************************

247

23DD 167F LD D,7FH --- D = precedence value for up arrow
23DF 18EC JR 23CDH --- Continue expression evaluation
23E1 D5 PUSH DE --- Save precedence value/token **********************
23E2 CD7F0A CALL 0A7FH --- Convert current value to an integer, leave in HL
23E5 D1 POP DE --- Restore precedence value/token
23E6 E5 PUSH HL --- Save current value (integer)
23E7 01E925 LD BC,25E9H --- Logical operator routine address
23EA 18E1 JR 23CDH --- Continue syntax analysis
23EC 78 LD A,B --- A = precedence value previous operator * cont--> *
23ED FE64 CP 64H --- Compare it with relational AND
23EF D0 RET NC --- Exit if prior operator was relational
23F0 C5 PUSH BC --- BC = precedence value previous operator/token
23F1 D5 PUSH DE --- DE = 6, 5, or 3/token
23F2 110464 LD DE,6404H --- DE = precedence value for '<=', '>=' cont-->
23F5 21B825 LD HL,25B8H --- Addr of routine to compare logical quantities
23F8 E5 PUSH HL --- to stack
23F9 E7 RST 20H --- Test data type
23FA C29523 JP NZ,2395H --- If not string go
23FD 2A2141 LD HL,(4121H) --- HL = string address. Put variable onto stack
2400 E5 PUSH HL --- Save string address on stack
2401 018C25 LD BC,258CH --- BC = address of string comparison routine
2404 18C7 JR 23CDH --- Save addr in BC on stk. Continue analyzing stmt
2406 C1 POP BC --- End of statement or precedence break *** cont--> *
2407 79 LD A,C --- A = C = token
2408 32B040 LD (40B0H),A --- 40B0 = arith token of last operand cont-->
240B 78 LD A,B --- Data type of first operand
240C FE08 CP 08H --- Test data type for first operand
240E 2828 JR Z,2438H --->: Jmp if first operand is double precision
2410 3AAF40 LD A,(40AFH) -- : No, test current operand
2413 FE08 CP 08H -- : Test data type
2415 CA6024 JP Z,2460H -- : Jump if double precision
2418 57 LD D,A -- : D = data type current operand
2419 78 LD A,B -- : A = data type 1st operand
241A FE04 CP 04H -- : Test data type for current operand
241C CA7224 JP Z,2472H -- : Jmp if 1st operand single precision
241F 7A LD A,D -- : A = data type current operand
2420 FE03 CP 03H -- : Is it CR string variable
2422 CAF60A JP Z,0AF6H -- : TM error if string variable
2425 D27C24 JP NC,247CH -- : Jump if sng, else integer
2428 21BF18 LD HL,18BFH -- : Compute addr of arith routines
242B 0600 LD B,00H -- : As two * arith token
242D 09 ADD HL,BC -- : plus origin of arith routine addr table
242E 09 ADD HL,BC -- : gives addr of loc. containing addr cont-->
242F 4E LD C,(HL) -- : Addr of integer arith routines. C = LSB
2430 23 INC HL -- : Bump to next loc. of addr
2431 46 LD B,(HL) -- : B = MSB of addr of arith routine
2432 D1 POP DE -- : DE = value of first operand
2433 2A2141 LD HL,(4121H) -- : HL = value of current operand
2436 C5 PUSH BC -- : Save addr of arith routine on stack for following
2437 C9 RET -- : Go to arith routine :POP
2438 CDDB0A CALL 0ADBH <---: Convert current value to DP *******************
243B CDFC09 CALL 09FCH --- Convert current value to SP
243E E1 POP HL --- Move current value to
243F 221F41 LD (411FH),HL --- very end of WRA1
2442 E1 POP HL --- HL = 2nd most sig. part of DP value
2443 221D41 LD (411DH),HL --- to near end of WRA1
2446 C1 POP BC --- BC/DE = remainder of DP value
2447 D1 POP DE --- Save BC/DE in upper part of WRA1
2448 CDB409 CALL 09B4H --- Move DE to 4121, BC to 4123
244B CDDB0A CALL 0ADBH --- Convert first value to double precision

248

23E1 * ***

23EC * *********************** Relational token routine ************

23F2 : /token (relational sequence)

2406 * BC = data type/ arithmetic token 0 - 7 **********************

2408 : (the one to be performed)

242E : of arith routine

2438 * ***

249

244E 21AB18 LD HL,18ABH --- Base addr of double precision routines
2451 3AB040 LD A,(40B0H) --- Get token value. Use it to compute addr of arith
2454 07 RLCA --- Token times 2 :routine
2455 C5 PUSH BC --- Save BC so we can use it for 16 bit arith
2456 4F LD C,A --- C = 2 * token
2457 0600 LD B,00H --- B = 0
2459 09 ADD HL,BC --- (Token value * 2) + 18AB = table addr of arith
245A C1 POP BC --- Restore BC :routine
245B 7E LD A,(HL) --- Load LSB of arith routine addr
245C 23 INC HL --- Bump to MSB
245D 66 LD H,(HL) --- Load MSB of arith routine addr into HL
245E 6F LD L,A --- HL = addr of arith routine
245F E9 JP (HL) --- Jmp to arith routine. Rtn to 2346
2460 C5 PUSH BC --- Save data type first operand/arith token *cont-->*
2461 CDFC09 CALL 09FCH --- Move current value to 'saved' area
2464 F1 POP AF --- A = data type for other operand
2465 32AF40 LD (40AFH),A --- Save it and
2468 FE04 CP 04H --- test for single precision
246A 28DA JR Z,2446H --- Jump if SP, go convert value to DP and do
246C E1 POP HL --- Value must be integer. Pop it from :operation
246D 222141 LD (4121H),HL --- stack, save as current value then go, convert
2470 18D9 JR 244BH --- it to double precision and perform operation
2472 CDB10A CALL 0AB1H --- Convert current operand to single precision ******
2475 C1 POP BC --- Left hand operator to BC
2476 D1 POP DE --- and DE
2477 21B518 LD HL,18B5H --- Base addr of SP arith routines
247A 18D5 JR 2451H --- Go perform operation
247C E1 POP HL --- Load integer operand into HL *********** cont-->
247D CDA409 CALL 09A4H --- Save current SP value on stack
2480 CDCF0A CALL 0ACFH --- Convert integer value in Iii. to SP
2483 CDBF09 CALL 09BFH --- Load SP equivalent of integer into BC/DE
2486 E1 POP HL --- LSB/NMSB of stack SP value
2487 222341 LD (4123H),HL --- to current value
248A E1 POP HL --- MSB/exponent of stack value
248B 222141 LD (4121H),HL --- to current value
248E 18E7 JR 2477H --- Go perform operation
2490 E5 PUSH HL --- Save HL so it can be ** INTEGER division * cont-> *
2491 EB EX DE,HL --- Prepare to convert DE to SP
2492 CDCF0A CALL 0ACFH --- Convert DE to SP
2495 E1 POP HL --- Restore original HL
2496 CDA409 CALL 09A4H --- Move converted DE to stack
2499 CDCF0A CALL 0ACFH --- Convert HL to SP
249C C3A008 JP 08A0H --- Go do SP division
249F D7 RST 10H --- Plus routine examine next symbol *****************
24A0 1E28 LD E,28H --- MO error if end of string
24A2 CAA219 JP Z,19A2H --- Output if Z
24A5 DA6C0E JP C,0E6CH --- Jump if numeric - convert ASCII to binary
24A8 CD3D1E CALL 1E3DH --- Check for letter
24AB D24025 JP NC,2540H --- Go if letter
24AE FECD CP 0CDH --- Test for + token
24B0 28ED JR Z,249FH --- Go if + (token) - look for following number
24B2 FE2E CP 2EH --- Test for decimal point
24B4 CA6C0E JP Z,0E6CH --- Go if decimal point
24B7 FECE CP 0CEH --- Test for - token
24B9 CA3225 JP Z,2532H --- Go if - (token)
24BC FE22 CP 22H --- Test for quote
24BE CA6628 JP Z,2866H --- Go if quote. Build a literal string pointer entry
24C1 FECB CP 0CBH --- Test for not token
24C3 CAC425 JP Z,25C4H --- Go if not (token)
24C6 FE26 CP 26H --- Test for &

250

2460 * 1st operand not DP ********* 2nd operand DP *****************

2472 * ***

247C * 1st operand is SP **** 2nd operand is integer ***************

2490 * converted later ***-- Convert both values (HL & DE) to SP ***
: and use SP division.

249E * ***

251

24C8 CA9441 JP Z,4194H --- Go if &
24CB FEC3 CP 0C3H --- Test for ERR token
24CD 200A JR NZ,24D9H --- Go if not ERR
24CF D7 RST 10H --- Position to next element in code string
24D0 3A9A40 LD A,(409AH) --- Fetch current error number
24D3 E5 PUSH HL --- Save current code string addr
24D4 CDF827 CALL 27F8H --- Save err. no. as current value (integer)
24D7 E1 POP HL --- Restore code string addr
24D8 C9 RET --- Rtn to expression evaluation
24D9 FEC2 CP 0C2H --- Test for ERL *************************************
24DB 200A JR NZ,24E7H --- Go if not ERL
24DD D7 RST 10H --- Position to next element in code string
24DE E5 PUSH HL --- Save current code string addr
24DF 2AEA40 LD HL,(40EAH) --- Fetch line no. with error
24E2 CD660C CALL 0C66H --- Convert line no. to SP & save as current value
24E5 E1 POP HL --- Restore code string addr
24E6 C9 RET --- Rtn to expression evaluation
24E7 FEC0 CP 0C0H --- Test for VARPTR token ************ VARPTR *********
24E9 2014 JR NZ,24FFH --- Go if not VARPTR
24EB D7 RST 10H --- Get next char from code string
24EC CF RST 08H --- 24EC: RST 08 - Test next char for left cont-->
24ED 28CD JR Z,24BCH --- 24ED: DC 28 - Value for left paren
24EF 0D DEC C --- 24EE: CALL 260D - Evaluate variable name
24F0 26CF LD H,0CFH --- 24F1: RST 08 - Test next char for right cont-->
24F2 29 ADD HL,HL --- 24F2: DC 29 - Value for right paren
24F3 E5 PUSH HL --- Save current code string addr
24F4 EB EX DE,HL --- Move address of variable to HL
24F5 7C LD A,H --- Then test for zero address (undefined variable)
24F6 B5 OR L --- Combine LSB and MSB of address
24F7 CA4A1E JP Z,1E4AH --- FC error if variable not defined
24FA CD9A0A CALL 0A9AH --- Save addr as current variable, set type to integer
24FD E1 POP HL --- Restore current code string address
24FE C9 RET --- Return to execution driver
24FF FEC1 CP 0C1H --- Test for USR *************************************
2501 CAFE27 JP Z,27FEH --- Go if USR
2504 FEC5 CP 0C5H --- Test for INSTR token
2506 CA9D41 JP Z,419DH --- Go if INSTR : Disk BASIC (JP 582F)
2509 FEC8 CP 0C8H --- Test for MEM token
250B CAC927 JP Z,27C9H --- Go if MEM
250E FEC7 CP 0C7H --- Test for TIME$ token
2510 CA7641 JP Z,4176H --- Go if TIME$
2513 FEC6 CP 0C6H --- Test for POINT token
2515 CA3201 JP Z,0132H --- Go if POINT
2518 FEC9 CP 0C9H --- Test for INKEY$ token
251A CA9D01 JP Z,019DH --- Go if INKEY$
251D FEC4 CP 0C4H --- Test for STRING$ token
251F CA2F2A JP Z,2A2FH --- Go if STRING$
2522 FEBE CP 0BEH --- Test for FN token
2524 CA5541 JP Z,4155H --- Go if FN : Disk BASIC (JP 558E)
2527 D6D7 SUB 0D7H --- Test for SGN to MID$ tokens
2529 D24E25 JP NC,254EH --- Jmp if token SGN thru MID$
252C CD3523 CALL 2335H --- Token < 215 - better be (. Call pause cont-->
252F CF RST 08H --- Test next char for close paren ')'
2530 29 ADD HL,HL --- 2530: DC 29 Value for ')'
2531 C9 RET --- Rtn to caller
2532 167D LD D,7DH --- Load precedence value ** Binary minus routine ****
2534 CD3A23 CALL 233AH --- Evaluate variable
2537 2AF340 LD HL,(40F3H) --- Get addr of next element in code string
253A E5 PUSH HL --- Save addr of where to continue from
253B CD7B09 CALL 097BH --- Invert sign of current value

252

24D9 * ***

24E7 * ***

24EC : paren & skip over it

24F0 : paren & skip over it

24FF * ***

252C : return when expression exhausted

2532 * ***

253

253E E1 POP HL --- Restore code string addr see note-->
253F C9 RET --- Ret to expression evaluation
2540 CD0D26 CALL 260DH --- Get addr of variable *************** see note--> *
2543 E5 PUSH HL --- Save code string addr
2544 EB EX DE,HL --- Addr of variable to HL
2545 222141 LD (4121H),HL --- Store it in 4121
2548 E7 RST 20H --- Determine data type
2549 C4F709 CALL NZ,09F7H --- Call if numeric data: move numeric value to 4127
254C E1 POP HL --- HL = addr of next symbol in input string
254D C9 RET --- Rtn to caller
254E 0600 LD B,00H --- B = 0 ************************ SNG - MID$ *********
2550 07 RLCA --- A = 2*(token - D7)
2551 4F LD C,A --- Save new token
2552 C5 PUSH BC --- Save 0/2*(token - D7) on stack
2553 D7 RST 10H --- Fetch next character from tokenized string
2554 79 LD A,C --- Look for SGN - CHR$ token
2555 FE41 CP 41H --- Test for adjusted token
2557 3816 JR C,256FH --->: Jmp if token SGN-CHR$, else it's LEFT-MID$
2559 CD3523 CALL 2335H -- : Go evaluate expression part of cont-->
255C CF RST 08H -- : Test next char for comma
255D 2C INC L -- : 255D: DC 2C comma
255E CDF40A CALL 0AF4H -- : Insure current variable is a string, else error
2561 EB EX DE,HL -- : Make sure current variable is a string. DE =
2562 2A2141 LD HL,(4121H) -- : current pos. in pgm stmt. HL = addr of string
2565 E3 EX (SP),HL -- : Move string addr to stack, followed by string
2566 E5 PUSH HL -- : Save 00/2*(token - D7)
2567 EB EX DE,HL -- : Pgm statement position to HL
2568 CD1C2B CALL 2B1CH -- : Evaluate n portion of string function
256B EB EX DE,HL -- : DE = current position in statement. HL = n
256C E3 EX (SP),HL -- : Move n to stack. HL = 2*(token - D7)
256D 1814 JR 2583H -- : Go to action routine for token
256F CD2C25 CALL 252CH <---: Evaluate expression. see note-->
2572 E3 EX (SP),HL --- HL = 0 + 2*(token - D7)
2573 7D LD A,L --- A = 2*(token - D7)
2574 FE0C CP 0CH --- Test for SNG - SQR
2576 3807 JR C,257FH --->: Jmp if token SNG - SQR
2578 FE1B CP 1BH -- : Test adjusted token then
257A E5 PUSH HL -- : Save 0 + 2*(token - D7) and
257B DCB10A CALL C,0AB1H -- : Convert integer in 4121 to SP if token SQR-ATN
257E E1 POP HL -- : Restore token to HL
257F 113E25 LD DE,253EH <---: Push return addr of 253E onto stack so we can
2582 D5 PUSH DE --- return after executing function
2583 010816 LD BC,1608H --- Addr for functions SGN - MID$
2586 09 ADD HL,BC --- Add index for required function
2587 4E LD C,(HL) --- C = LSB of addr of function
2588 23 INC HL --- Bump to MSB
2589 66 LD H,(HL) --- H = MSB of addr of function
258A 69 LD L,C --- HL = addr of function
258B E9 JP (HL) --- Jmp to SGN - MID$ function
258C CDD729 CALL 29D7H --- Make sure string will fit into ********* cont--> *
258F 7E LD A,(HL) --- A = length
2590 23 INC HL --- Bump to LSB of string addr
2591 4E LD C,(HL) --- Load LSB of string addr
2592 23 INC HL --- Bump to MSB of string addr
2593 46 LD B,(HL) --- BC = string address
2594 D1 POP DE --- Clear the stack
2595 C5 PUSH BC --- Save first string addr
2596 F5 PUSH AF --- A = length of first string
2597 CDDE29 CALL 29DEH --- Get addr. of second string into HL
259A D1 POP DE --- D = length of first string

254

253E : Rtn here after executing functions SNG - MID$

2540 * Locate address of variable. Name pointed to by HL **********

254E * ***

2559 : calling sequence. 2 or 3 parameter calling sequence.

256E : Single variable parameter call

258C : string data area ***** Relational compare two strings *******

255

259B 5E LD E,(HL) --- E = no. of characters in second string
259C 23 INC HL --- Bump to LSB of 2nd string addr
259D 4E LD C,(HL) --- C = LSB of addr. for string 2
259E 23 INC HL --- Bump to MSB of addr.
259F 46 LD B,(HL) --- BC = address of string 2
25A0 E1 POP HL --- HL = addr. of string 1
25A1 7B LD A,E <---: A = remaining characters string 2
25A2 B2 OR D • : D = remaining characters string 1
25A3 C8 RET Z • : Exit if all characters compared
25A4 7A LD A,D • : Reload count of chars remaining string 1
25A5 D601 SUB 01H • : Test if count is zero
25A7 D8 RET C • : Exit if string 1 exhausted
25A8 AF XOR A • : Clears A-reg
25A9 BB CP E • : Gives zero - no. of remaining chars string 2
25AA 3C INC A • : Test if any char remains in string 2
25AB D0 RET NC • : Exit if string 2 exhausted
25AC 15 DEC D • : Decrement chars remaining string 1
25AD 1D DEC E • : Decrement chars remaining string 2
25AE 0A LD A,(BC) • : Compare a character in string 1 with string 2
25AF BE CP (HL) • : Compare
25B0 23 INC HL • : Bump string 1 address
25B1 03 INC BC • : Bump string 2 address
25B2 28ED JR Z,25A1H --->: Jmp if characters are equal
25B4 3F CCF --- Else reverse CARRY flag so 960 will give
25B5 C36009 JP 0960H --- a +1 or -1. Rtn to caller
25B8 3C INC A --- Increment value for current operator
25B9 8F ADC A,A --- Gives 1 w/NC if 0 or 0 w/C if FF see note-->
25BA C1 POP BC --- Load value for other operand
25BB A0 AND B --- Combine values
25BC C6FF ADD A,0FFH --- Yields 0 if both equal, CARRY if unequal
25BE 9F SBC A,A --- Sets A = 0 if equal, 1 if unequal
25BF CD8D09 CALL 098DH --- Set current value to 00 if A +, FF if A negative
25C2 1812 JR 25D6H --- Continue with expression evaluation
25C4 165A LD D,5AH --- D = precedence value * NOT routine * see note--> *
25C6 CD3A23 CALL 233AH --- Evaluate rest of exp until a higher precedence
25C9 CD7F0A CALL 0A7FH --- Current value to integer
25CC 7D LD A,L --- Result in HL
25CD 2F CPL --- Complement LSB of integer
25CE 6F LD L,A --- Restore LSB to HL
25CF 7C LD A,H --- Then load MSB
25D0 2F CPL --- Complement MSB of integer
25D1 67 LD H,A --- Restore MSB to HL
25D2 222141 LD (4121H),HL --- Save complemented number as current value
25D5 C1 POP BC --- Clear the stack
25D6 C34623 JP 2346H --- Continue with expression evaluation
25D9 3AAF40 LD A,(40AFH) --- Load data type for value in WRA1 ******* cont--> *
25DC FE08 CP 08H --- Prepare to set data flags
25DE 3005 JR NC,25E5H -->: Jmp if double precision
25E0 D603 SUB 03H -- : not DP, subtract 03
25E2 B7 OR A -- : then set status flags according to result
25E3 37 SCF -- : and exit with
25E4 C9 RET -- : CARRY flag set
25E5 D603 SUB 03H <--: for DP types subtract 03
25E7 B7 OR A --- then set status flags according to result
25E8 C9 RET --- and exit without CARRY flag set
25E9 C5 PUSH BC --- B = precision value for last operator ** cont--> *
25EA CD7F0A CALL 0A7FH --- Convert current value to integer
25ED F1 POP AF --- Pop BC into AF
25EE D1 POP DE --- Return addr to DE
25EF 01FA27 LD BC,27FAH --- Place new rtn addr on stack

256

: Compare two logical quantities

25C4 * * Entered from PLUS routine while evaluating ***
: * an expression

25D9 * RST 20 routine **

: ! Data type stored in 40AFH as follows !
: ! TYPE CODE ZERO CARRY NEG PARITY A-REG !
: ! ---- ---- ---- ----- --- ------ --- . !
: ! INT 02 NZ C N E -1 !
: ! STR 03 Z C P E 0 !
: ! SNG 04 NZ C P O 1 !
: ! DBL 08 NZ NC P E 5 !

25E9 * Logical operator routine - Entered from expression evaluation

257

25F2 C5 PUSH BC --- Save rtn addr on stack
25F3 FE46 CP 46H --- Is token an 'OR'
25F5 2006 JR NZ,25FDH --->: No, Jmp to comparison routine
25F7 7B LD A,E -- : Comp DE with HL. Result in HL
25F8 B5 OR L -- : Comp E and L. Result in L
25F9 6F LD L,A -- : Restore L
25FA 7C LD A,H -- : Comp H and D. Result left in A. Will be moved
25FB B2 OR D -- : to H at 27FA
25FC C9 RET -- : Go to 27FA. Convert result to integer. Rtn to
25FD 7B LD A,E <---: Logical comp DE with HL. Result in HL. :2346
25FE A5 AND L --- And E and L
25FF 6F LD L,A --- Result to L
2600 7C LD A,H --- Load H so we can : H at 27FA
2601 A2 AND D --- Comp D with H. Result left in A will be moved to
2602 C9 RET --- Goto 27FA. Make result an integer. Rtn to 2346
2603 2B DEC HL --- Backspace code string pointer ********************
2604 D7 RST 10H --- Re-evaluate last symbol
2605 C8 RET Z --- Exit if end of statement
2606 CF RST 08H --- Test next char for single quote
2607 2C INC L --- 2607: DC 2C single quote
2608 010326 LD BC,2603H --- Locate addr of a variable ** Force rtn to 2603 **
260B C5 PUSH BC --- 260C : OR AF Set create mode
260C F6AF OR 0AFH --- 260D : XOR A Zero A, set 40AE = locate
260E 32AE40 LD (40AEH),A --- Set 40AE = locate/create mode
2611 46 LD B,(HL) --- Save 1st char of variable name
2612 CD3D1E CALL 1E3DH --- Check for letter
2615 DA9719 JP C,1997H --- SN error if C (not a letter in (HL) cont-->
2618 AF XOR A --- Clear A and C
2619 4F LD C,A --- Zeros C
261A D7 RST 10H --- Get next char in input string
261B 3805 JR C,2622H ----->: Jump if numeric
261D CD3D1E CALL 1E3DH -- : Test for alpha-numeric. Set CARRY if false
2620 3809 JR C,262BH --->: : Jump if not a letter. Error if cont-->
2622 4F LD C,A <---:-: 2nd char of name to C
2623 D7 RST 10H <-- : Test symbol following 2nd char until a non-
2624 38FD JR C,2623H -->:: numeric symbol is found, cont-->
2626 CD3D1E CALL 1E3DH -- :: Test for letter
2629 30F8 JR NC,2623H -->:: Jmp if a letter
262B 115226 LD DE,2652H <---: We are now positioned at end of cont-->
262E D5 PUSH DE --- Place 2652H return address on stack
262F 1602 LD D,02H --- Test char following name for
2631 FE25 CP 25H --- If so, set D to data type 2
2633 C8 RET Z --- Return (jump 2652H) if % (INT) : D = 2
2634 14 INC D --- Ret D to 3 in case variable is a string
2635 FE24 CP 24H --- Test for $ following variable name
2637 C8 RET Z --- Return if $ (STR) : D = 3
2638 14 INC D --- Ret D to 4 in case variable is SP
2639 FE21 CP 21H --- Test for ! following variable name
263B C8 RET Z --- Return if ! (SNG) : D = 4
263C 1608 LD D,08H --- Ret D to 8 in case variable is DP
263E FE23 CP 23H --- Test for # following variable name
2640 C8 RET Z --- Return if # (DBL) : D = 8 cont-->
2641 78 LD A,B --- Ref etch first char of symbol
2642 D641 SUB 41H --- Convert from alpha to numeric (0-26)
2644 E67F AND 7FH --- Clear possible sign bit
2646 5F LD E,A --- E = 0(A) thru 26(Z)
2647 1600 LD D,00H --- DE = 0 (A) thru 26(base 10) (Z)
2649 E5 PUSH HL --- Save current position in input stream
264A 210141 LD HL,4101H --- Start of data type table
264D 19 ADD HL,DE --- Add value of first char of var name (0=A,...26=Z)

258

2603 * ***

2608 * **

2615 : Variable name does not start with a letter.

2620 : not a letter, or digit, or (

2624 : Jmp if char is numeric

262E : variable name. Only 1st two characters are used.

2640 : Variable name was not followed by type suffix. Use 1st char
: of var name to determine data type.

259

264E 56 LD D,(HL) --- Get data type
264F E1 POP HL --- Restore pointer to current pos in input stream
2650 2B DEC HL --- Backspace 1 position
2651 C9 RET --- Return with data type in D (Go to 2652)
2652 7A LD A,D --- D = data type continuation of locating * cont--> *
2653 32AF40 LD (40AFH),A --- Save data type flag
2656 D7 RST 10H --- Get next char of variable name (call 1D78)
2657 3ADC40 LD A,(40DCH) --- Get 'FOR' statement flag
265A B7 OR A --- Test it
265B C26426 JP NZ,2664H --->: Jmp if processing 'FOR' statement
265E 7E LD A,(HL) -- : Refetch next element from code string
265F D628 SUB 28H -- : Compare with a (
2661 CAE926 JP Z,26E9H -- : Jump if '(' (subscripted variable)
2664 AF XOR A <---: Zero A-reg
2665 32DC40 LD (40DCH),A --- Flag as non-subscripted
2668 E5 PUSH HL --- HL = current position in input string
2669 D5 PUSH DE --- Save data type flag
266A 2AF940 LD HL,(40F9H) --- HL = end of pgm ptr = start of simple var list
266D EB EX DE,HL <-----: DE = addr of a simple variable
266E 2AFB40 LD HL,(40FBH) • : Start of arrays pointer
2671 DF RST 18H • : Compare addr of next simple cont-->
2672 E1 POP HL • : HL = data type flag
2673 2819 JR Z,268EH ------:>: Variable not currently defined
2675 1A LD A,(DE) • : : Get type for current variable
2676 6F LD L,A • : : Save in L
2677 BC CP H • : : Compare type
2678 13 INC DE • : : Bump to 2nd char of name for this entry
2679 200B JR NZ,2686H --->: : : Types do not match. Skip to next var in list
267B 1A LD A,(DE) • : : : Type matches, compare 2nd char of name from
267C B9 CP C • : : : VLT w/2nd char of name in BC
267D 2007 JR NZ,2686H • : : : No match, go find next entry in AT
267F 13 INC DE • : : : 2nd char matches, compare 1st char of name
2680 1A LD A,(DE) • : : : after bumping to 1st char of name
2681 B8 CP B • : : : Test if first char of names are equal
2682 CACC26 JP Z,26CCH • : : : We have found the addr of a simple var, exit
2685 3E13 LD A,13H <---: : : 2686: INC DE Bump to next entry in simple
2687 13 INC DE • : : variable list
2688 E5 PUSH HL • : : Save data type flag so it can be reloaded
2689 2600 LD H,00H • : : at 2672
268B 19 ADD HL,DE • : : Bump to next entry in list
268C 18DF JR 266DH ----->: : Continue searching for variable name
268E 7C LD A,H <-------: Save type
268F E1 POP HL --- Clear stack, HL = current position in input string
2690 E3 EX (SP),HL --- HL = return addr Stack = current position in input
2691 F5 PUSH AF --- A = type :string
2692 D5 PUSH DE --- DE = start of arrays ptr
2693 11F124 LD DE,24F1H --- Addr of VARPTR locator
2696 DF RST 18H --- Were we called from VARPTR?
2697 2836 JR Z,26CFH --- Yes, Jmp to 26CF
2699 114325 LD DE,2543H --- DE = addr of find addr of variable routine
269C DF RST 18H --- Were we called from find addr of variable?
269D D1 POP DE --- Remove start of arrays ptr from stack
269E 2835 JR Z,26D5H --- Called while evaluating a subscript cont-->
26A0 F1 POP AF --- Clear stack, A = type
26A1 E3 EX (SP),HL --- HL = current position in input string.
26A2 E5 PUSH HL --- Stack = Return addr
26A3 C5 PUSH BC --- Place BC (1st char/2nd char of name) on stack
26A4 4F LD C,A --- followed by ret addr
26A5 0600 LD B,00H --- Clear B for computations
26A7 C5 PUSH BC --- Save 00/type. Now create a new entry in cont-->

260

2652 * a variable name ***

2671 : variable to start of array list

269E : This is the first reference to a simple variable. Define it.

26A7 : free space list for current variable.

261

26A8 03 INC BC --- B = 00, C = type
26A9 03 INC BC --- Gives type +02
26AA 03 INC BC --- Gives type +03 = 3 bytes overhead + spare for var
26AB 2AFD40 LD HL,(40FDH) --- Load start of free memory ptr (fmp)
26AE E5 PUSH HL --- Save free mem ptr
26AF 09 ADD HL,BC --- Free mem ptr + type(length) yields new fmp
26B0 C1 POP BC --- BC = old free mem ptr
26B1 E5 PUSH HL --- Save new free mem ptr
26B2 CD5519 CALL 1955H --- Move array list down. Add value to simple
26B5 E1 POP HL --- variable list
26B6 22FD40 LD (40FDH),HL --- Save new free mem ptr (it's official)
26B9 60 LD H,B --- HL = old fmp = 1st byte of new entry
26BA 69 LD L,C --- L = LSB byte of fmp
26BB 22FB40 LD (40FBH),HL --- New start of arrays pointer
26BE 2B DEC HL <---: Zero out new entry. All space between the new
26BF 3600 LD (HL),00H • : free memory pointer and the start of arrays ptr
26C1 DF RST 18H • : have we reached the end of the list
26C2 20FA JR NZ,26BEH --->: No, loop
26C4 D1 POP DE --- Get length (type)
26C5 73 LD (HL),E --- And store as first word in new entry
26C6 23 INC HL --- Bump to next location of entry
26C7 D1 POP DE --- Get 2nd char of name and store as 2nd word of
26C8 73 LD (HL),E --- entry
26C9 23 INC HL --- Bump to 3rd byte of entry
26CA 72 LD (HL),D --- And now 1st char of name
26CB EB EX DE,HL --- DE = addr of start of value in entry
26CC 13 INC DE --- Leave addr of variable name in DE
26CD E1 POP HL --- Clear stack before exiting
26CE C9 RET --- Return to caller
26CF 57 LD D,A --- DE = type/type ***********************************
26D0 5F LD E,A --- E = type
26D1 F1 POP AF --- Clear stack
26D2 F1 POP AF --- Clear stack
26D3 E3 EX (SP),HL --- Return addr to stk. Code string addr to HL
26D4 C9 RET --- Rtn to VARPTR routine
26D5 322441 LD (4124H),A --- Zero WRA1 ********* Locate subscripted variable **
26D8 C1 POP BC --- Clear stack
26D9 67 LD H,A --- Zero H
26DA 6F LD L,A --- and L
26DB 222141 LD (4121H),HL --- Zero string pointer in WRA1
26DE E7 RST 20H --- Determine data type
26DF 2006 JR NZ,26E7H ----> Jmp if not a string
26E1 212819 LD HL,1928H --- : Addr of READY message
26E4 222141 LD (4121H),HL --- : goes to WRA1
26E7 E1 POP HL <---: Restore code string addr
26E8 C9 RET --- Rtn to caller
26E9 E5 PUSH HL --- Current pos in input string ******** see note--> *
26EA 2AAE40 LD HL,(40AEH) --- HL = 00 locate mode, <> 0 create mode
26ED E3 EX (SP),HL --- Stack = (40AE), HL = code string addr.
26EE 57 LD D,A --- Zero to D
26EF D5 PUSH DE --- D = 0, E = numeric value of 1st char
26F0 C5 PUSH BC --- BC = 1st char/2nd char of name in ASCII
26F1 CD451E CALL 1E45H --- Evaluate everything up to the first cont-->
26F4 C1 POP BC --- BC = 1st char/2nd char of name in ASCII
26F5 F1 POP AF --- A = 0
26F6 EB EX DE,HL --- DE = current pos in input. End of cont-->
26F7 E3 EX (SP),HL --- Stack = value of subscript, (40AE)
26F8 E5 PUSH HL --- Save current pos in input string
26F9 EB EX DE,HL --- HL = current pos in input string, DE = (40AE)
26FA 3C INC A --- Increment no. of subscripts evaluated

262

26CF * ***

26D5 * ***

26E9 * Locate addr of subscripted var ** On entry: D=type, B=1st char
: C = 2nd char of name,
: HL = current pos in input
: string

26F1 :) or ,. Result in DE (integer) value

26F6 : subscript exp. HL = value of subscript

263

26FB 57 LD D,A --- And save in D
26FC 7E LD A,(HL) --- Get terminal symbol
26FD FE2C CP 2CH --- Go evaluate next index if terminal symbol was a
26FF 28EE JR Z,26EFH --- comma, else
2701 CF RST 08H --- Test next char in input stream for ','
2702 29 ADD HL,HL --- 2702: DC 29 ','
2703 22F340 LD (40F3H),HL --- 40F3 = addr of terminal symbol for subscript exp
2706 E1 POP HL --- HL = (40AE) before subscript evaluation. Create
2707 22AE40 LD (40AEH),HL --- and save for later use. :locate flag.
270A D5 PUSH DE --- DE = number of subscripts evaluated
270B 2AFB40 LD HL,(40FBH) --- Start of arrays pointer
270E 3E19 LD A,19H <-------: 270F: ADD HL,DE Compute end cont-->
2710 EB EX DE,HL • : DE = addr of next array :research
2711 2AFD40 LD HL,(40FDH) • : Load free memory ptr - upper limit for
2714 EB EX DE,HL • : HL = arrays ptr. DE = free memory ptr
2715 DF RST 18H • : Compare free mem ptr to array ptr
2716 3AAF40 LD A,(40AFH) • : Data type/length flag
2719 2827 JR Z,2742H ----->: : Jmp if name not found & all arrays tested
271B BE CP (HL) • : : Compare data type of an arrays entry with
271C 23 INC HL • : : the type we're looking for
271D 2008 JR NZ,2727H --->: : : Types don't match. Skip to next array
271F 7E LD A,(HL) • : : : Data types match. Now look for a match on
2720 B9 CP C • : : : the 2nd character of the name.
2721 23 INC HL • : : : 2nd char doesn't match. Skip to next array
2722 2004 JR NZ,2728H • : : : No match, skip to next entry
2724 7E LD A,(HL) • : : : 2nd char matches.
2725 B8 CP B • : : : Test 1st char. Leave Z flag set if a match
2726 3E23 LD A,23H • : : : 2727: INC HL
2728 23 INC HL • : : : Bump to next byte in array entry
2729 5E LD E,(HL) • : : : E = LSB of offset to next array
272A 23 INC HL • : : : Bump to next byte of array entry
272B 56 LD D,(HL) • : : : DE = offset to next array
272C 23 INC HL • : : : Bump to number of indexes entry
272D 20E0 JR NZ,270FH ------:>: Named array not found, examine next entry
272F 3AAE40 LD A,(40AEH) --- : 1st char matches. We have found the addr of
2732 B7 OR A --- : the variable in the arrays list. Are we in a
2733 1E12 LD E,12H --- : create mode?
2735 C2A219 JP NZ,19A2H --- : Yes, then error. Symbol is doubly defined
2738 F1 POP AF --- : A = number of subscripts evaluated
2739 96 SUB (HL) --- : Compared to no. specified in DIM statement
273A CA9527 JP Z,2795H --- : Jmp if no. of indexes match
273D 1E10 LD E,10H --- : BS error code
273F C3A219 JP 19A2H --- : Output BS error message
2742 77 LD (HL),A <-----: Save type. Build a subscripted variable entry
2743 23 INC HL --- Bump to 1st char of name (2nd actually, cont-->
2744 5F LD E,A --- DE = 00/number of bytes per entry
2745 1600 LD D,00H --- D = 00
2747 F1 POP AF --- A = number of indexes
2748 71 LD (HL),C --- Save 2nd char of name
2749 23 INC HL --- Bump to pos for 2nd char of name
274A 70 LD (HL),B --- Save 1st char of name
274B 23 INC HL --- Bump to LSB of offset to next entry
274C 4F LD C,A --- C = number of indexes
274D CD6319 CALL 1963H --- Compute amt of space left between HL & free mem.
2750 23 INC HL --- Skip over offset entry
2751 23 INC HL --- HL = pos for number of indexes in entry
2752 22D840 LD (40D8H),HL --- 40D8 = addr of max number of indices
2755 71 LD (HL),C --- Save number of indexes for this array (1,2,or 3)
2756 23 INC HL --- HL points to first subscript entry in array table
2757 3AAE40 LD A,(40AEH) --- A = create/locate flag

264

270E : of arrays. Search array for named variable

2743 : because they are stored in last/first order)

265

275A 17 RLA --- Set carry flag = 0 - locate, 1 - create
275B 79 LD A,C --- no. of indexes for this array
275C 010B00 LD BC,000BH <---: Default index = 10+1 if name not cont-->
275F 3002 JR NC,2763H -->:: Jmp if creating because unable to locate
2761 C1 POP BC • :: Else we are in create mode. Get user
2762 03 INC BC • :: specified index. Add one
2763 71 LD (HL),C <--:: and save
2764 23 INC HL • :: in the array
2765 70 LD (HL),B • :: table
2766 23 INC HL • :: Bump to next set of indices
2767 F5 PUSH AF • :: Save create/locate flag
2768 CDAA0B CALL 0BAAH • :: Multiply size of index times bytes per entry.
276B F1 POP AF • :: Accumulate product in DE. When done cont-->
276C 3D DEC A • :: Decrement no. of indexes multiplied
276D 20ED JR NZ,275CH --->: Jmp if more indexes
276F F5 PUSH AF --- Save create/locate flag
2770 42 LD B,D --- B = MSB of array length
2771 4B LD C,E --- BC = length of array in bytes
2772 EB EX DE,HL --- DE = start of array - current addr in array table
2773 19 ADD HL,DE --- HL = end of array
2774 38C7 JR C,273DH --- Error, overflowed 2**16
2776 CD6C19 CALL 196CH --- Test amt of free space, rtn if enough
2779 22FD40 LD (40FDH),HL --- 40FD = LWA of array
277C 2B DEC HL <---: Zero array starting at
277D 3600 LD (HL),00H • :end and working towards start
277F DF RST 18H • :Are we at start
2780 20FA JR NZ,277CH --->: No, loop
2782 03 INC BC --- BC = no. of bytes in array + 1
2783 57 LD D,A --- D = 0
2784 2AD840 LD HL,(40D8H) --- HL = addr of no. of indices
2787 5E LD E,(HL) --- DE = max. no. of indexes
2788 EB EX DE,HL --- DE = addr of no. of indices. HL=max no. of indexes
2789 29 ADD HL,HL --- HL = 2 * no. of indexes
278A 09 ADD HL,BC --- HL = 2 * no. of indexes + size of array
278B EB EX DE,HL --- HL = no. of indexes addr
278C 2B DEC HL --- Backspace two bytes to offset address
278D 2B DEC HL --- 2nd backspace
278E 73 LD (HL),E --- Save offset to next
278F 23 INC HL --- entry in arrays
2790 72 LD (HL),D --- List
2791 23 INC HL --- HL = addr of no. of indexes entry
2792 F1 POP AF --- Restore create/locate flag
2793 3830 JR C,27C5H --- Jmp if in create mode
2795 47 LD B,A --- BC=0 for first pass thru loop ****** see note--> *
2796 4F LD C,A --- C = 0
2797 7E LD A,(HL) --- A = no. of indexes in array
2798 23 INC HL --- Bump HL to right index (max + 1)
2799 16E1 LD D,0E1H --- 279A: POP HL Word addr of next index limit
279B 5E LD E,(HL) --- E = LSB of index limit
279C 23 INC HL --- Bump to pos of MSB
279D 56 LD D,(HL) --- D = MSB of index limit
279E 23 INC HL --- HL = addr of next index limit
279F E3 EX (SP),HL --- HL = callers index value. Stack=addr of next index
27A0 F5 PUSH AF --- Save number of indexes :limit
27A1 DF RST 18H --- Now, compare user subscript against limit for that
27A2 D23D27 JP NC,273DH --- Jmp if index greater than allowed :index
27A5 CDAA0B CALL 0BAAH --- Multiply previous subscript times max allowed
27A8 19 ADD HL,DE --- Value for current subscript. Keep sum of products
27A9 F1 POP AF --- A = no. of indexes :in HL
27AA 3D DEC A --- Count index just processed

266

275C : explicitly dimensioned

276B : DE = size of array in bytes

2795 * Continuation of array processing. Locate address of ********
* subscripted variable then load its value. Column major
* format.

267

27AB 44 LD B,H --- BC = previous subscript
27AC 4D LD C,L --- C = LSB
27AD 20EB JR NZ,279AH --- Jmp if more indexes to go
27AF 3AAF40 LD A,(40AFH) --- A = data type flag
27B2 44 LD B,H --- Now, prepare to multiply
27B3 4D LD C,L --- index by size of each entry
27B4 29 ADD HL,HL --- Index * 2
27B5 D604 SUB 04H --- Test data type
27B7 3804 JR C,27BDH --- Jump if integer or string
27B9 29 ADD HL,HL --- Neither, compute index * 4
27BA 2806 JR Z,27C2H --- Jmp if single precision
27BC 29 ADD HL,HL --- Index * 8, must be double precision
27BD B7 OR A --- Set parity status flags
27BE E2C227 JP PO,27C2H --- Jump if integer
27C1 09 ADD HL,BC --- Index * 3, string
27C2 C1 POP BC --- BC = starting addr of array
27C3 09 ADD HL,BC --- Add index to base
27C4 EB EX DE,HL --- DE = address of subscripted variable
27C5 2AF340 LD HL,(40F3H) --- Restore code string position
27C8 C9 RET --- Rtn to caller
27C9 AF XOR A --- Clear A, status flags ************ MEM routine ***
27CA E5 PUSH HL --- Save current position in pgm stmt
27CB 32AF40 LD (40AFH),A --- Set current data not string so FRE will cont-->
27CE CDD427 CALL 27D4H --- Call FRE routine - Rtn amt of free cont-->
27D1 E1 POP HL --- Restore current pointer in pgm stmt
27D2 D7 RST 10H --- Load next token into A
27D3 C9 RET --- Rtn to BASIC
27D4 2AFD40 LD HL,(40FDH) --- HL = start of free memory ******** FRE routine **
27D7 EB EX DE,HL --- DE = start of free mem ptr
27D8 210000 LD HL,0000H --- clear HL so we can load CSP by adding it to HL
27DB 39 ADD HL,SP --- HL = current stack ptr
27DC E7 RST 20H --- Test data type
27DD 200D JR NZ,27ECH ---> Jump if called from MEM. Variable not a string
27DF CDDA29 CALL 29DAH ---: Get addr of string into HL
27E2 CDE628 CALL 28E6H ---: Go compute amt of space remaining See note -->
27E5 2AA040 LD HL,(40A0H) ---: Load boundary addr for string area
27E8 EB EX DE,HL ---: Move limit to DE
27E9 2AD640 LD HL,(40D6H) ---: HL = current string area pointer
27EC 7D LD A,L <--: A = LSB of one addr
27ED 93 SUB E --- Minus LSB of other addr
27EE 6F LD L,A --- Restore L
27EF 7C LD A,H --- H = MSB of one addr
27F0 9A SBC A,D --- Minus MSB of other addr
27F1 67 LD H,A --- Restore H. HL = diff in addr (HL-DE)
27F2 C3660C JP 0C66H --- Convert diff to single precision & return
27F5 3AA640 LD A,(40A6H) --- Load current cursor position ** POS routine **
27F8 6F LD L,A --- Save in L
27F9 AF XOR A --- Zero A-reg, H-reg
27FA 67 LD H,A --- HL = cursor position (H = 00, L = Position)
27FB C39A0A JP 0A9AH --- Value in HL to 4121. Flag as integer. Rtn to BASIC
27FE CDA941 CALL 41A9H --- DOS Exit (JP 5679) ***************** USR routine **
2801 D7 RST 10H --- Get next character from input stream
2802 CD2C25 CALL 252CH --- Evaluate the remainder of the statement. cont-->
2805 E5 PUSH HL --- Save addr of next element in code string
2806 219008 LD HL,0890H --- This continuation addr clears the stack before
2809 E5 PUSH HL --- returning to the BASIC caller
280A 3AAF40 LD A,(40AFH) --- A = current data type
280D F5 PUSH AF --- Save on stack
280E FE03 CP 03H --- Test for string
2810 CCDA29 CALL Z,29DAH --- If a string, get addr into HL

268

27C9 * ***

27CB : will do simple compilation
27CE : space as current value

27D4 * ***

27E2 * Remaining space = Current stack addr - start of free mem ptr
* if variable not a string, or
* = next available location in string area -
* start of string area.
* If variable is a string.

27F5 * ***

27FE * ***

2802 : Get USR number

269

2813 F1 POP AF --- Restore type to A-reg
2814 EB EX DE,HL --- DE = string addr
2815 2A8E40 LD HL,(408EH) --- (408E) contains entry pt to USR subroutine
2818 E9 JP (HL) --- Enter user assembly language subroutine
2819 E5 PUSH HL --- Called by LET to convert result of ***** cont--> *
281A E607 AND 07H --- A = result type
281C 21A118 LD HL,18A1H --- Address of arithmetic conversion routines
281F 4F LD C,A --- Setup BC = 00/type where
2820 0600 LD B,00H --- Type = 0(DP), 1(I), 2(string), 3(SP)
2822 09 ADD HL,BC --- Plus offset for result of arithmetic
2823 CD8625 CALL 2586H --- Convert result to proper data type
2826 E1 POP HL --- Restore HL
2827 C9 RET --- Rtn
2828 E5 PUSH HL --- Save code string addr * Called from INPUT routine *
2829 2AA240 LD HL,(40A2H) --- HL = current line no. in binary
282C 23 INC HL --- Add 1 so a test for a DIRECT statement
282D 7C LD A,H --- can be made. Line no. = FFFF
282E B5 OR L --- while in INPUT phase
282F E1 POP HL --- Restore code string pointer
2830 C0 RET NZ --- Exit if line no. not zero (not a DIRECT stmt)
2831 1E16 LD E,16H --- Else give an ID error
2833 C3A219 JP 19A2H --- Print error and rtn to INPUT PHASE
2836 CDBD0F CALL 0FBDH --- Current value convert caller's ********* cont--> *
2839 CD6528 CALL 2865H --- Build a literal string, pool entry cont-->
283C CDDA29 CALL 29DAH --- Get addr of current value into HL
283F 012B2A LD BC,2A2BH --- Continuation addr in CHR$ routine to stack
2842 C5 PUSH BC --- Put addr on stack
2843 7E LD A,(HL) --- A = length of string
2844 23 INC HL --- Bump to string address
2845 E5 PUSH HL --- HL = address of string pointer
2846 CDBF28 CALL 28BFH --- Test remaining string area to make sure new string
2849 E1 POP HL --- will fit. Reload HL with string address
284A 4E LD C,(HL) --- C = LSB of string addr.
284B 23 INC HL --- Bump to MSB :user value
284C 46 LD B,(HL) --- BC = address of string for ASCII equivalent of
284D CD5A28 CALL 285AH --- Save length, address of string at 40D3
2850 E5 PUSH HL --- HL = 40D3
2851 6F LD L,A --- L = length of string
2852 CDCE29 CALL 29CEH --- Move string from BC (temp area) to DE (string data
2855 D1 POP DE --- DE = 40D3 :area)
2856 C9 RET --- Rtn to caller
2857 CDBF28 CALL 28BFH --- Make sure there's room. Get addr of **** cont--> *
285A 21D340 LD HL,40D3H --- HL = addr of temp storage area
285D E5 PUSH HL --- Save 40D3 on stk so it can be restored
285E 77 LD (HL),A --- Save length of string
285F 23 INC HL --- Bump to position of LSB of addr
2860 73 LD (HL),E --- Save LSB of string addr
2861 23 INC HL --- Bump to position of MSB of addr
2862 72 LD (HL),D --- Save MSB of string addr
2863 E1 POP HL --- Restore starting addr of string control block
2864 C9 RET --- Rtn to caller
2865 2B DEC HL --- Backspace input pointer to quote * Quote Routine *
2866 0622 LD B,22H --- B = ASCII value for quote (')
2868 50 LD D,B --- D = terminating search character
2869 E5 PUSH HL --- Save addr of starting quote
286A 0EFF LD C,0FFH --- Initialize counter to -1
286C 23 INC HL --- Skip over quote
286D 7E LD A,(HL) --- Get a character
286E 0C INC C --- Bump count of characters processed
286F B7 OR A --- Set status flags

270

2819 * arithmetic routines to proper destination type **************

2828 * ***

2836 * parameter to ASCII **
2839 : for ASCII number. Save as current value

2857 * next string area in DE ***** Save A, DE at 40D3 - 40D5 ******

2865 * ***

271

2870 2806 JR Z,2878H --- Jmp if EOS
2872 BA CP D --- Test for terminating char (usually quote)
2873 2803 JR Z,2878H --- Jmp if terminating character
2875 B8 CP B --- Test for second terminating character
2876 20F4 JR NZ,286CH --- Still not terminating character, loop till it is
2878 FE22 CP 22H --- Was last character a quote ?
287A CC781D CALL Z,1D78H --- If yes get following character
287D E3 EX (SP),HL --- Address of starting quote see note-->
287E 23 INC HL --- Plus one gives address of first char
287F EB EX DE,HL --- Starting addr of char string to DE
2880 79 LD A,C --- A = length of string
2881 CD5A28 CALL 285AH --- Move length, addr of string to 40 D3
2884 11D340 LD DE,40D3H --- 40D3 = length, addr of the ********* see note--> *
2887 3ED5 LD A,0D5H --- string in the string data area
2889 2AB340 LD HL,(40B3H) --- HL = addr of next avail literal string entry
288C 222141 LD (4121H),HL --- Addr of current string val = current literal area
288F 3E03 LD A,03H --- Current value type = string :string value
2891 32AF40 LD (40AFH),A --- Save in type flag byte
2894 CDD309 CALL 09D3H --- Move length string area addr to current lit.
2897 11D640 LD DE,40D6H --- DE = end of literal are addr to current lit.
289A DF RST 18H --- Make sure we have not overrun lit. string
289B 22B340 LD (40B3H),HL --- pool area. Update addr of next aval lit. string
289E E1 POP HL --- Restore code string addr :pool entry
289F 7E LD A,(HL) --- A = next element of code string
28A0 C0 RET NZ --- Return if temp string area not overrun
28A1 1E1E LD E,1EH --- ST error code
28A3 C3A219 JP 19A2H --- Output ST error message
28A6 23 INC HL --- Message output routine ***************************
28A7 CD6528 CALL 2865H --- Build literal string pool entry
28AA CDDA29 CALL 29DAH --- Get addr of current variable into HL
28AD CDC409 CALL 09C4H --- Get length of string into D. Starting addr in BC
28B0 14 INC D --- for decrement
28B1 15 DEC D <---: Count 1 character printed
28B2 C8 RET Z • : Exit if all characters printed
28B3 0A LD A,(BC) • : Character to be printed
28B4 CD2A03 CALL 032AH • : Output char to system output device
28B7 FE0D CP 0DH • : Then test if it was a carriage return
28B9 CC0321 CALL Z,2103H • : Exit if char was a carriage return
28BC 03 INC BC • : Bump to next character
28BD 18F2 JR 28B1H --->: Loop till CR, or D characters printed
28BF B7 OR A --- Compute amt of space remaining in string area ****
28C0 0EF1 LD C,0F1H --- 28C1H : POP AF
28C2 F5 PUSH AF --- Save length of string
28C3 2AA040 LD HL,(40A0H) --- Load starting addr of string area into HL
28C6 EB EX DE,HL --- DE = addr of string area
28C7 2AD640 LD HL,(40D6H) --- Load ptr to next avail string loc into HL
28CA 2F CPL --- Compute the negative of the length of the string
28CB 4F LD C,A --- and save it in C
28CC 06FF LD B,0FFH --- BC = - length of string
28CE 09 ADD HL,BC --- HL = new current string pointer
28CF 23 INC HL --- plus one
28D0 DF RST 18H --- Compare new string pointer against limit
28D1 3807 JR C,28DAH --->: OS error if CARRY see note-->
28D3 22D640 LD (40D6H),HL -- : Save new current string pointer
28D6 23 INC HL -- : Bump it by one
28D7 EB EX DE,HL -- : DE = new current string pointer
28D8 F1 POP AF -- : A = length of string
28D9 C9 RET -- : Rtn to caller
28DA F1 POP AF <---: A = length of string, **************** cont--> *
28DB 1E1A LD E,1AH --- OS error code

272

287D : Address of 1st non-blank char after quote to stack

2884 * Move length, address from 40113 to current literal string. ***
: Pool entry pointed to by 40113. Set current value to type
: string and point its addr to the current literal string
: (40D3)

2816 * ***

28BF * ***

28D1 : Insufficient room in string area

28DA * get status flags to find out if reorganization has **********
: been attempted

273

28DD CAA219 JP Z,19A2H --- Error if free space reorganized and still no room
28E0 BF CP A --- Set status flags to zero and ret
28E1 F5 PUSH AF --- Save zero
28E2 01C128 LD BC,28C1H --- Continuation address to retry allocation
28E5 C5 PUSH BC --- To stack
28E6 2AB140 LD HL,(40B1H) --- HL = highest memory pointer
28E9 22D640 LD (40D6H),HL --- Reset current string pointer to end of memory
28EC 210000 LD HL,0000H --- Load a zero
28EF E5 PUSH HL --- And save it on stack
28F0 2AA040 LD HL,(40A0H) --- HL = boundary of string data area
28F3 E5 PUSH HL --- Save it on stack also
28F4 21B540 LD HL,40B5H --- HL = address of first entry in string pointer area
28F7 EB EX DE,HL --- Save HL in DE
28F8 2AB340 LD HL,(40B3H) --- HL = addr of current entry in LSPT :area
28FB EB EX DE,HL --- DE = address of current entry in string pointer
28FC DF RST 18H --- Is 40 B3 pointing to the first entry (40B5)
28FD 01F728 LD BC,28F7H --- Continuation addr in case answer is no
2900 C24A29 JP NZ,294AH --- No, JMP to 294A, RTN to 28F7
2903 2AF940 LD HL,(40F9H) --- HL = simple variable pointer
2906 EB EX DE,HL <------: Save it in DE
2907 2AFB40 LD HL,(40FBH) • : HL = arrays pointer
290A EB EX DE,HL • : HL = variable list pointer. DE = arrays ptr
290B DF RST 18H • : Compare their addresses. Are they equal
290C 2813 JR Z,2921H ->:----: Yes, simple variables have been scanned
290E 7E LD A,(HL) : • : Get type for first simple variable
290F 23 INC HL : • : Bump to LSB by incrementing HL by 3
2910 23 INC HL : • : So that type can be added to give addr of
2911 23 INC HL : • : Addr of next variable
2912 FE03 CP 03H : • : Test if variable is a string
2914 2004 JR NZ,291AH : • : Jmp if not a string
2916 CD4B29 CALL 294BH : • : For a string, get its addr into HL
2919 AF XOR A : • : Zero A because HL already points to next
291A 5F LD E,A : • : Bump to addr of :entry
291B 1600 LD D,00H : • : Next variable
291D 19 ADD HL,DE : • : Gives addr of next variable in list
291E 18E6 JR 2906H --:--->: Loop till all simple variables examined
2920 C1 POP BC <-:------: Clear HL, push from below
2921 EB EX DE,HL <-: • : DE = points to current array entry
2922 2AFD40 LD HL,(40FDH) • : HL = addr of next avail mem loc.
2925 EB EX DE,HL • : DE = addr of first avail mem loc.
2926 DF RST 18H • : Have we scanned all arrays entries
2927 CA6B29 JP Z,296BH • : Yes
292A 7E LD A,(HL) • : No, get type for this array
292B 23 INC HL • : Bump to 2nd char of name
292C CDC209 CALL 09C2H • : Load offset to next array into cont --->
292F E5 PUSH HL • : Save addr of no. of indexes
2930 09 ADD HL,BC • : Add offset to get next arrays entry
2931 FE03 CP 03H • : Is current type a string?
2933 20EB JR NZ,2920H -------->: No, loop keep looking
2935 22D840 LD (40D8H),HL --- Save addr of next array entry
2938 E1 POP HL --- HL = addr of no. of indexes
2939 4E LD C,(HL) --- C = no. of indexes
293A 0600 LD B,00H --- Set B = 0. Then
293C 09 ADD HL,BC --- add 2 times no. of indexes to current
293D 09 ADD HL,BC --- addr to get end of index boundaries
293E 23 INC HL --- HL = addr of end of indexes for this variable
293F EB EX DE,HL --- Move it to DE
2940 2AD840 LD HL,(40D8H) --- HL = addr of next variable
2943 EB EX DE,HL --- HL = end of index boundaries, DE = addr of next
2944 DF RST 18H --- Test for empty list :variable

274

:BC. Skips over name

275

2945 28DA JR Z,2921H --- Jmp if list empty
2947 013F29 LD BC,293FH --- Continuation addr for string array processing
294A C5 PUSH BC --- Save continuation addr on stack
294B AF XOR A --- Clear all status flags
294C B6 OR (HL) --- A = length of string
294D 23 INC HL --- Bump to next two bytes to
294E 5E LD E,(HL) --- get string address
294F 23 INC HL --- Bump to MSB of string addr
2950 56 LD D,(HL) --- DE = string address :addr)
2951 23 INC HL --- Bump to next entry in string pointer area (test
2952 C8 RET Z --- Exit if string length is zero
2953 44 LD B,H --- BC = addr of next string pointer
2954 4D LD C,L --- Loaded from HL
2955 2AD640 LD HL,(40D6H) --- HL = current string area pointer
2958 DF RST 18H --- Is string in string data area?
2959 60 LD H,B --- Restore addr of next literal pool entry
295A 69 LD L,C --- to HL
295B D8 RET C --- Return if string in string area
295C E1 POP HL --- HL = return address
295D E3 EX (SP),HL --- HL = callers test address
295E DF RST 18H --- Compare callers test addr to string addr
295F E3 EX (SP),HL --- Restore stack to callers flag, rtn addr
2960 E5 PUSH HL --- Restore rtn addr to stack
2961 60 LD H,B --- HL = addr of next literal string pool entry
2962 69 LD L,C --- Loaded from BC
2963 D0 RET NC --- Exit if string addr below callers addr
2964 C1 POP BC --- BC = return address
2965 F1 POP AF --- Get rid of callers string addr
2966 F1 POP AF --- Callers flag
2967 E5 PUSH HL --- Save addr of next string area pointer
2968 D5 PUSH DE --- Save addr of current string
2969 C5 PUSH BC --- Return addr
296A C9 RET --- Rtn to caller
296B D1 POP DE --- DE = addr of last string moved to string area ****
296C E1 POP HL --- HL = addr of next string area pointer
296D 7D LD A,L --- If HL = 0 then there were no strings in string
296E B4 OR H --- area which belonged to the literal cont-->
296F C8 RET Z --- Exit if no temp strings in string area cont-->
2970 2B DEC HL --- Backspace addr to get pointers for literal pool
2971 46 LD B,(HL) --- B = LSB of addr for string :entry
2972 2B DEC HL --- Skip backwards to next byte of addr
2973 4E LD C,(HL) --- C = MSB of addr for string
2974 E5 PUSH HL --- Save addr of pointer in lit. string so we update
2975 2B DEC HL --- Bump down to length : it after move
2976 6E LD L,(HL) --- L = length of string
2977 2600 LD H,00H --- Zero H so we can do 16 bit arith
2979 09 ADD HL,BC --- BL = ending addr of string
297A 50 LD D,B --- DE = starting addr of string
297B 59 LD E,C --- Loaded from BC
297C 2B DEC HL --- HL = ending addr -1
297D 44 LD B,H --- BC = ending addr -1
297E 4D LD C,L --- Loaded from HL
297F 2AD640 LD HL,(40D6H) --- HL = current string data pointer
2982 CD5819 CALL 1958H --- Move string to new area in string area table
2985 E1 POP HL --- HL = addr of literal string pointer
2986 71 LD (HL),C --- Now, move address of string in string area to
2987 23 INC HL --- 2nd and Ad bytes of literal pool entry
2988 70 LD (HL),B --- Save 1st character of name
2989 69 LD L,C --- Then setup HL so it points to the start of the
298A 60 LD H,B --- last string moved to the string area

276

296B * ***

296E : string pool (temporary)
296F : String area reorganized

277

298B 2B DEC HL --- And loop until no more literal pool entries are
298C C3E928 JP 28E9H --- found which must be moved to the string area.
298F C5 PUSH BC --- String addition. Concatenate two strings * note-->
2990 E5 PUSH HL --- Save PV last operand/ last token, and code string
2991 2A2141 LD HL,(4121H) --- Stack = addr of string 1, HL = current pos. :addr
2994 E3 EX (SP),HL --- in input string
2995 CD9F24 CALL 249FH --- Locate next variable
2998 E3 EX (SP),HL --- HL = 4121, Stack = code string addr
2999 CDF40A CALL 0AF4H --- Make sure it's a string
299C 7E LD A,(HL) --- A = length of string 1
299D E5 PUSH HL --- Save addr of string 1
299E 2A2141 LD HL,(4121H) --- HL = addr of string 2
29A1 E5 PUSH HL --- Addr of string 2 to stack
29A2 86 ADD A,(HL) --- A = length string 1 + string 2
29A3 1E1C LD E,1CH --- output if carry
29A5 DAA219 JP C,19A2H --- Jmp if combined string length exceeds 256
29A8 CD5728 CALL 2857H --- Make sure there's enough room for both strings
29AB D1 POP DE --- DE = addr of string 2
29AC CDDE29 CALL 29DEH --- Update string area for string 2 if necessary
29AF E3 EX (SP),HL --- HL = addr of string 1
29B0 CDDD29 CALL 29DDH --- Update string area for string 1 if necessary
29B3 E5 PUSH HL --- Save addr of string 1
29B4 2AD440 LD HL,(40D4H) --- Get addr of string 2
29B7 EB EX DE,HL --- DE = address of second string
29B8 CDC629 CALL 29C6H --- Move string 1 from stack to string work area
29BB CDC629 CALL 29C6H --- Move string 2
29BE 214923 LD HL,2349H --- Continuation addr in expression evaluation
29C1 E3 EX (SP),HL --- to stack. Code string addr to HL
29C2 E5 PUSH HL --- Save code string addr :table
29C3 C38428 JP 2884H --- Save string 1 + string 2 as entry in literal pool
29C6 E1 POP HL --- HL = rtn addr, stack = string addr ***** cont--> *
29C7 E3 EX (SP),HL --- Stack = rtn addr, HL = string addr
29C8 7E LD A,(HL) --- A = count of characters to move
29C9 23 INC HL --- Bump to LSB of addr
29CA 4E LD C,(HL) --- C = LSB of addr
29CB 23 INC HL --- Bump to MSB of addr
29CC 46 LD B,(HL) --- BC = addr
29CD 6F LD L,A --- L = no. of bytes to move
29CE 2C INC L --- Do INC/DEC to set status flags
29CF 2D DEC L --- Decrement count of characters moved
29D0 C8 RET Z --- Exit if all character moved see note-->
29D1 0A LD A,(BC) --- Fetch a char
29D2 12 LD (DE),A --- Store a char
29D3 03 INC BC --- Bump source addr
29D4 13 INC DE --- Bump destination addr
29D5 18F8 JR 29CFH --- Loop
29D7 CDF40A CALL 0AF4H --- Continuation of VAL, FRE, and PRINT **** cont--> *
29DA 2A2141 LD HL,(4121H) --- HL = addr of current string
29DD EB EX DE,HL --- Move addr to DE
29DE CDF529 CALL 29F5H --- Test : is current variable also
29E1 EB EX DE,HL --- the last lit. string pool entry
29E2 C0 RET NZ --- No, exit w/DE = current variable addr
29E3 D5 PUSH DE --- Yes, current variable was last literal
29E4 50 LD D,B --- string defined
29E5 59 LD E,C --- Move string addr to DE
29E6 1B DEC DE --- and save on stack
29E7 4E LD C,(HL) --- C = count of characters in current string
29E8 2AD640 LD HL,(40D6H) --- HL = current string pointer
29EB DF RST 18H --- Is current string=last one defined in string area
29EC 2005 JR NZ,29F3H --- No, exit

278

298E * Called by expression evaluation *****************************

29C6 * Move using stack routine On entry stack = count/source ****
: address, DE = destination address.

29D0 : Move L characters from (BC) to (DE)

29D7 * processing. Test current value to make sure it's string. ***
: Error if number

279

29EE 47 LD B,A --- Yes , update current string pointer
29EF 09 ADD HL,BC --- HL = addr of string + length = new string ptr addr
29F0 22D640 LD (40D6H),HL --- Save new string ptr addr
29F3 E1 POP HL --- HL = addr of current string
29F4 C9 RET --- Rtn to caller
29F5 2AB340 LD HL,(40B3H) --- HL = addr of next avail string location **********
29F8 2B DEC HL --- Now, backup two words and load
29F9 46 LD B,(HL) --- addr of previous string into BC.
29FA 2B DEC HL --- Then, compare the address of that entry
29FB 4E LD C,(HL) --- against the address of the current
29FC 2B DEC HL --- variable (or whatever's in DE). If unequal
29FD DF RST 18H --- exit, else reset the pointer (40 B3) to
29FE C0 RET NZ --- point to the current (last) entry
29FF 22B340 LD (40B3H),HL --- Update pointer to current entry in LSPT
2A02 C9 RET --- Rtn to caller
2A03 01F827 LD BC,27F8H --- Continuation addr of POS to stk *** LEN routine **
2A06 C5 PUSH BC --- 27F8 to stack
2A07 CDD729 CALL 29D7H --- Get addr of current string pointer into HL
2A0A AF XOR A --- Clear status, zero A
2A0B 57 LD D,A --- and D
2A0C 7E LD A,(HL) --- A = length of string from string pointer area
2A0D B7 OR A --- Set status flags for length
2A0E C9 RET --- Continue at POS unless entered at 2A07
2A0F 01F827 LD BC,27F8H --- Continuation addr of 27F8 to stk **8 ASC routine **
2A12 C5 PUSH BC --- Saves value in HL as current value
2A13 CD072A CALL 2A07H --- Get addr of current string pointer into HL. Length
2A16 CA4A1E JP Z,1E4AH --- Error of length of string = 0 :into A
2A19 23 INC HL --- Now, load addr of string into DE
2A1A 5E LD E,(HL) --- E = LSB of string addr
2A1B 23 INC HL --- Bump to MSB
2A1C 56 LD D,(HL) --- D = MSB of string addr
2A1D 1A LD A,(DE) --- A = first character of string
2A1E C9 RET --- Rtn to caller
2A1F 3E01 LD A,01H --- A=length of string to be created ** CHR$ routine *
2A21 CD5728 CALL 2857H --- Save length and value of char at 40 D3
2A24 CD1F2B CALL 2B1FH --- Convert value to integer. Save in DE
2A27 2AD440 LD HL,(40D4H) --- HL = address of temporary string
2A2A 73 LD (HL),E --- Save value in string area
2A2B C1 POP BC --- Clear stack :interpreter
2A2C C38428 JP 2884H --- Move string from literal pool to string. Rtn to
2A2F D7 RST 10H --- STRING$ routine *********************************
2A30 CF RST 08H --- Test next char for '('
2A31 28CD JR Z,2A00H --- 2A31: DC 28 '('
2A33 1C INC E --- 2A32: CALL 2B1C evaluate expression - get N
2A34 2B DEC HL --- Backspace code string
2A35 D5 PUSH DE --- Save integer value for N
2A36 CF RST 08H --- Test next char for comma
2A37 2C INC L --- 2A37: DC 2C comma
2A38 CD3723 CALL 2337H --- Evaluate expression, get value of char
2A3B CF RST 08H --- Test next char for ')'
2A3C 29 ADD HL,HL --- 2A3C: DC 29 ')'
2A3D E3 EX (SP),HL --- HL = integer value for N/stack = next code string
2A3E E5 PUSH HL --- Followed by N :addr
2A3F E7 RST 20H --- Test current value data type
2A40 2805 JR Z,2A47H --->: Jump if string
2A42 CD1F2B CALL 2B1FH -- : Convert to integer. Leave in DE, WRA1
2A45 1803 JR 2A4AH -- : Skip loading of string addr & 1st character
2A47 CD132A CALL 2A13H <---: A = character to be repeated
2A4A D1 POP DE --- DE = value of N from STRING$ (N,'X') call
2A4B F5 PUSH AF --- Save character

280

29F5 * ***

2A03 * ***

2A0F * ***

2A1F * ***

2A2F * ***

281

2A4C F5 PUSH AF --- Save two copies of the character
2A4D 7B LD A,E --- A = number of repetition
2A4E CD5728 CALL 2857H --- Allocate N bytes in string area. cont-->
2A51 5F LD E,A --- E = number of repetition
2A52 F1 POP AF --- A = character to be repeated
2A53 1C INC E --- Set status flags
2A54 1D DEC E --- So we can test for zero
2A55 28D4 JR Z,2A2BH --- If zero repetition, exit
2A57 2AD440 LD HL,(40D4H) --- HL = addr allocated in string area
2A5A 77 LD (HL),A <---: Move char
2A5B 23 INC HL • : Bump string addr
2A5C 1D DEC E • : Count repetition
2A5D 20FB JR NZ,2A5AH --->: Loop till 'N' copies moved
2A5F 18CA JR 2A2BH --- Rtn to caller
2A61 CDDF2A CALL 2ADFH --- Test for closing ')' ** LEFT$ routine ** cont--> *
2A64 AF XOR A --- Clear A, status flags
2A65 E3 EX (SP),HL --- HL = addr of n. Stack = current code string addr
2A66 4F LD C,A --- Zero to C
2A67 3EE5 LD A,0E5H --- 2A68: LD H,A
2A69 E5 PUSH HL --- Save addr of string
2A6A 7E LD A,(HL) --- Get length of string
2A6B B8 CP B --- Compare with number of bytes to return
2A6C 3802 JR C,2A70H --- Jmp if byte request exceeds size of string
2A6E 78 LD A,B --- Save no. of bytes to return
2A6F 110E00 LD DE,000EH --- 2A70: LD C,00
2A72 C5 PUSH BC --- Save length of string to return
2A73 CDBF28 CALL 28BFH --- Make sure there's room for new string. cont-->
2A76 C1 POP BC --- BC = length of string to be returned
2A77 E1 POP HL --- HL = string addr
2A78 E5 PUSH HL --- Save string addr on stack
2A79 23 INC HL --- Skip over character count
2A7A 46 LD B,(HL) --- B = LSB of string addr
2A7B 23 INC HL --- Skip to MSB
2A7C 66 LD H,(HL) --- H = MSB of string addr
2A7D 68 LD L,B --- HL = addr of string
2A7E 0600 LD B,00H --- BC = 00/length of string desired
2A80 09 ADD HL,BC --- HL = ending addr of last char to be moved
2A81 44 LD B,H --- Now, move ending
2A82 4D LD C,L --- Addr into BC
2A83 CD5A28 CALL 285AH --- Save length (A) and starting addr (DE) cont-->
2A86 6F LD L,A --- L = number of chars to move
2A87 CDCE29 CALL 29CEH --- Move (L) chars. from (BC) to (DE)
2A8A D1 POP DE --- Clear stack
2A8B CDDE29 CALL 29DEH --- Get addr of literal pool string into 40D3
2A8E C38428 JP 2884H --- Go move string to string area. Ret to interpreter
2A91 CDDF2A CALL 2ADFH --- Setup registers **************** RIGHT$ routine **
2A94 D1 POP DE --- Load string address
2A95 D5 PUSH DE --- And restore it to stack
2A96 1A LD A,(DE) --- A = number of characters in string
2A97 90 SUB B --- Subtract no. of bytes to isolate
2A98 18CB JR 2A65H --- Use LEFT$ code
2A9A EB EX DE,HL --- HL = code string addr ************ MID$ routine **
2A9B 7E LD A,(HL) --- A = terminal character
2A9C CDE22A CALL 2AE2H --- BC = position DE = string address
2A9F 04 INC B --- Set status flags to
2AA0 05 DEC B --- correspond to position value
2AA1 CA4A1E JP Z,1E4AH --- Error if starting position is zero
2AA4 C5 PUSH BC --- Save starting position
2AA5 1EFF LD E,0FFH --- E = 256 in case number of bytes not given
2AA7 FE29 CP 29H --- Test for right paren following P

282

2A4E : Save address of allocated area at 40D4 - 40D5

2A61 * Setup registers ***** On entry HL = address of LEFT$ *****
: stack = string address
: stack + 1 = n
: DE = code string addr

2A73 : Get addr of next string area in DE

2A83 : next avail loc in lit pool

2A91 * ***

2A9A * ***

283

2AA9 2805 JR Z,2AB0H --->: Jmp if no byte count given, else
2AAB CF RST 08H -- : Test next input value for comma
2AAC 2C INC L -- : 2AAC: DC 2C comma
2AAD CD1C2B CALL 2B1CH -- : Evaluate expression. Get byte count as integer
2AB0 CF RST 08H <---: Test next char for ')' :into DE
2AB1 29 ADD HL,HL --- 2AB1: DC 28 ')'
2AB2 F1 POP AF --- A = starting position
2AB3 E3 EX (SP),HL --- HL = string addr. Stack = current code string addr
2AB4 01692A LD BC,2A69H --- Continuation of MID$ processing in LEFT$
2AB7 C5 PUSH BC --- Address to stack
2AB8 3D DEC A --- Starting position minus one
2AB9 BE CP (HL) --- Compare starting position with length of string
2ABA 0600 LD B,00H --- B = 00
2ABC D0 RET NC --- Continue at 2A69 if starting position-1 > length of
2ABD 4F LD C,A --- C = starting position -1 :string
2ABE 7E LD A,(HL) --- A = length of string
2ABF 91 SUB C --- C = no. of chars between P and end of string
2AC0 BB CP E --- Compare with number of characters to return
2AC1 47 LD B,A --- B = no. of characters to return
2AC2 D8 RET C --- Continue at 2A69 if more characters cont-->
2AC3 43 LD B,E --- Else, return number of characters requested
2AC4 C9 RET --- Continue at 2A69
2AC5 CD072A CALL 2A07H --- Get length into A-reg *************** VAL routine *
2AC8 CAF827 JP Z,27F8H --- Address of string pointer block in HL
2ACB 5F LD E,A --- Exit if length = 0. Move length to E, D = 0
2ACC 23 INC HL --- Skip over length
2ACD 7E LD A,(HL) --- A = LSB of string addr
2ACE 23 INC HL --- Bump to MSB of addr
2ACF 66 LD H,(HL) --- H = MSB of string addr
2AD0 6F LD L,A --- Now, HL = string addr
2AD1 E5 PUSH HL --- Save string addr then add length which
2AD2 19 ADD HL,DE --- gives HL = ending addr
2AD3 46 LD B,(HL) --- Save last char of string
2AD4 72 LD (HL),D --- Replace it with a zero
2AD5 E3 EX (SP),HL --- Stack=ending addr of string. HL=starting addr of
2AD6 C5 PUSH BC --- Save replaced char of string :string
2AD7 7E LD A,(HL) --- A = 1st char of string
2AD8 CD650E CALL 0E65H --- Convert numerics at start of string from ASCII to
2ADB C1 POP BC --- B = replaced character :binary
2ADC E1 POP HL --- HL = ending addr of string
2ADD 70 LD (HL),B --- Restore replaced char
2ADE C9 RET --- Rtn to BASIC
2ADF EB EX DE,HL --- DE = addr of calling routine *********** cont--> *
2AE0 CF RST 08H --- Look for right paren following parameters
2AE1 29 ADD HL,HL --- DC 28 ')'
2AE2 C1 POP BC --- Return address
2AE3 D1 POP DE --- DE = count of bytes to isolate
2AE4 C5 PUSH BC --- Restore return addr
2AE5 43 LD B,E --- B = byte count
2AE6 C9 RET --- HL = code string addr
2AE7 FE7A CP 7AH --- Test if token in range ***************************
2AE9 C29719 JP NZ,1997H --- SN error if NZ. Error if token => FA
2AEC C3D941 JP 41D9H --- Disk BASIC Exit. Let Disk BASIC handle TAB-MID$
2AEF CD1F2B CALL 2B1FH --- Get port no. into A-reg ********* INP routine ****
2AF2 329440 LD (4094H),A --- Save port number
2AF5 CD9340 CALL 4093H --- Go execute IN XX instr. Rtn to execution driver
2AF8 C3F827 JP 27F8H --- Evaluate expression . ** OUT routine ** cont--> *
2AFB CD0E2B CALL 2B0EH --- Value to A-reg.
2AFE C39640 JP 4096H --- Go execute OUT XX instr. Rtn to execution driver
2B01 D7 RST 10H --- Position to next char in input stream ** cont--> *

284

2AC2 : requested than string has in it

2AC5 * ***

2AE7 * HL = code string addr **** Called by LEFTS, MID$, & RIGHT$ **
to test for ending ')'.

Entry Exit
Stk=string addr string addr
 byte count DE=byte count
 ret addr B=byte count

2AEF * **

2AEF : **

2AFB * Port no. to 4094, 4097 ***************************************

2B01 * Evaluate an expression . Leave result as integer in DE *******

285

2B02 CD3723 CALL 2337H --- Evaluate expression. Result to WRA1
2B05 E5 PUSH HL --- Next code string addr
2B06 CD7F0A CALL 0A7FH --- Convert result to integer. Put it in HL
2B09 EB EX DE,HL --- DE = result (in integer form)
2B0A E1 POP HL --- Restore position in input stream
2B0B 7A LD A,D --- MSB of result to A
2B0C B7 OR A --- Rtn to caller
2B0D C9 RET --- Ret sign/zero flags for result
2B0E CD1C2B CALL 2B1CH --- Evaluate expression. Get port no. ****** cont--> *
2B11 329440 LD (4094H),A --- Save port no. in DOS addresses
2B14 329740 LD (4097H),A --- 4094 and 4097
2B17 CF RST 08H --- Test following char for single quote
2B18 2C INC L --- 2B18: DC 2C single quote
2B19 1801 JR 2B1CH --->: Skip over PRINT TAB entry point
2B1B D7 RST 10H --- : Examine next char (called by PRINT TAB)
2B1C CD3723 CALL 2337H <---: Evaluate expression. Get value
2B1F CD052B CALL 2B05H --- Convert result of exp to integer, load cont-->
2B22 C24A1E JP NZ,1E4AH --- FC error value > 255
2B25 2B DEC HL --- Backspace input string
2B26 D7 RST 10H --- Get next char from input string (bump HL & ret
2B27 7B LD A,E --- LSB of result to A :flags)
2B28 C9 RET --- Rtn to caller
2B29 3E01 LD A,01H --- Device type for printer ********** LLIST routine **
2B2B 329C40 LD (409CH),A --- Set current output device to printer
2B2E C1 POP BC --- Remove rtn addr from stack ******** LIST routine **
2B2F CD101B CALL 1B10H --- Get range of line nos. list on exit cont-->
2B32 C5 PUSH BC --- Save start line ptr
2B33 21FFFF LD HL,0FFFFH --- Set current line number to -1
2B36 22A240 LD (40A2H),HL --- Save in current line number location
2B39 E1 POP HL --- HL = addr of first line to be listed
2B3A D1 POP DE --- DE = addr of last line to be listed
2B3B 4E LD C,(HL) --- Now, get the pointer the next line
2B3C 23 INC HL --- C holds LSB of pointer to next line
2B3D 46 LD B,(HL) --- B = MSB of pointer to next line
2B3E 23 INC HL --- HL=addr of first byte for current line (line no.)
2B3F 78 LD A,B --- If the pointer to the next line cont-->
2B40 B1 OR C --- Check for end of pgm
2B41 CA191A JP Z,1A19H --- Return to READY routine if end
2B44 CDDF41 CALL 41DFH --- DOS Exit (JP 579C)
2B47 CD9B1D CALL 1D9BH --- Test keyboard input. Pause if cont-->
2B4A C5 PUSH BC --- Save addr of next line to be printed
2B4B 4E LD C,(HL) --- Get LSB of line number for current line
2B4C 23 INC HL --- Bump to next byte of line number
2B4D 46 LD B,(HL) --- Load MSB of current line number
2B4E 23 INC HL --- HL = first byte of pgm statement for current line
2B4F C5 PUSH BC --- Save line no.(in binary) for current line on stack
2B50 E3 EX (SP),HL --- Rearrange : stack=addr of 1st byte of pgm cont-->
2B51 EB EX DE,HL --- DE = addr of current line, HL = addr of last line
2B52 DF RST 18H --- Test to see if all lines listed :to list
2B53 C1 POP BC --- BC = addr of 1st byte of current line
2B54 DA181A JP C,1A18H --- Rtn to Input Phase if all lines listed
2B57 E3 EX (SP),HL --- HL = addr of last line to be printed cont-->
2B58 E5 PUSH HL --- Save addr of current line
2B59 C5 PUSH BC --- Save line no. (binary) for current line
2B5A EB EX DE,HL --- HL = addr of current line
2B5B 22EC40 LD (40ECH),HL --- Save in loc. for line number with error
2B5E CDAF0F CALL 0FAFH --- Output a line # in ASCII
2B61 3E20 LD A,20H --- A = ASCII blank
2B63 E1 POP HL --- HL = addr of current line
2B64 CD2A03 CALL 032AH --- And a blank

286

2B0E * Continuation of OUT routine *********************************

2B1F : it into DE. Set A = MSB

2B29 * **

2B2F : BC = addr of first line. Stack = addr of last line

2B3F : is zero, then the end of the pgm has been found

2B47 : shift @ hit, rtn when any release key hit

2B50 : HL = binary line no.

2B57 : Stack = line no. of current line

287

2B67 CD7E2B CALL 2B7EH --- Move current line to work area(40A7) and expand it
2B6A 2AA740 LD HL,(40A7H) --- HL = addr of expanded line
2B6D CD752B CALL 2B75H --- Buffer to screen (print current line)
2B70 CDFE20 CALL 20FEH --- Terminate line w/carriage ret line feed
2B73 18BE JR 2B33H --- Loop till all lines printed
2B75 7E LD A,(HL) --- Output area pointed to by HL *********************
2B76 B7 OR A --- Fetch next character to print
2B77 C8 RET Z --- Exit if end of message
2B78 CD2A03 CALL 032AH --- Print (HL)
2B7B 23 INC HL --- Bump to next char
2B7C 18F7 JR 2B75H --- Keep printing till (HL) = 0
2B7E E5 PUSH HL --- Save addr of line to be moved ****** see note--> *
2B7F 2AA740 LD HL,(40A7H) --- HL = addr of input buffer. Move it
2B82 44 LD B,H --- to BC where it will be used as
2B83 4D LD C,L --- an output buffer for expanded line
2B84 E1 POP HL --- Restore addr of line to be moved/expanded
2B85 16FF LD D,0FFH --- D = max. no. chars in a line
2B87 1803 JR 2B8CH --- Jmp into middle of move/expand code
2B89 03 INC BC <---: Bump to next loc. in print/work buffer
2B8A 15 DEC D • : Count of chars moved
2B8B C8 RET Z • : Exit if 256 chars moved
2B8C 7E LD A,(HL) <---:-: Get a char from program table (PST)
2B8D B7 OR A • : : Set status flags so we can test for EOS or
2B8E 23 INC HL • : : Bump to next char in code string :token
2B8F 02 LD (BC),A • : : Save last char in print/work buffer area
2B90 C8 RET Z • : : Exit if EOS (end of statement)
2B91 F2892B JP P,2B89H --->: : Jmp if char is not a token cont-->
2B94 FEFB CP 0FBH • :Test for quote token
2B96 2008 JR NZ,2BA0H --->: : Not a quote token, go search RW list for
2B98 0B DEC BC • : : full syntax for this token
2B99 0B DEC BC • : : We have a quote token
2B9A 0B DEC BC • : : Backspace expanded buffer ptr
2B9B 0B DEC BC • : : by 4
2B9C 14 INC D • : : Then adjust
2B9D 14 INC D • : : count of characters
2B9E 14 INC D • : : in buffer
2B9F 14 INC D • : : by four
2BA0 FE95 CP 95H <---: : Test for ELSE token
2BA2 CC240B CALL Z,0B24H • : Backspace expanded buffer ptr if ELSE
2BA5 D67F SUB 7FH • : A = the number of the entry cont-->
2BA7 E5 PUSH HL • : Save current code string addr
2BA8 5F LD E,A • : B = number of entries to skip
2BA9 215016 LD HL,1650H • : HL = reserved word table ptr
2BAC 7E LD A,(HL) <---: : Get a byte from reserved word (RW) table
2BAD B7 OR A • : : Set status to test for start of entry
2BAE 23 INC HL • : : Bump to next word in RW table
2BAF F2AC2B JP P,2BACH --->: : Jmp if not start of entry
2BB2 1D DEC E • : : Count one entry skipped see note-->
2BB3 20F7 JR NZ,2BACH --->: : Jmp if we have not skipped enough entries
2BB5 E67F AND 7FH • : Clear sign bit in first word of entry
2BB7 02 LD (BC),A • : Move a byte of RW (in ASCII) to print/work
2BB8 03 INC BC • : buffer. Bump to next work buffer addr
2BB9 15 DEC D • : Count total chars moved to print buffer
2BBA CAD828 JP Z,28D8H • : Jmp if 256 moved (Rtn to caller cont-->
2BBD 7E LD A,(HL) • : Get next word from RW list
2BBE 23 INC HL • : Bump to next entry in RW list
2BBF B7 OR A • : Set status flags so we can test cont-->
2BC0 F2B72B JP P,2BB7H • : Jmp if not end - Move rest of chars cont-->
2BC3 E1 POP HL • : Restore code string addr
2BC4 18C6 JR 2B8CH ----->: Continue scannning/moving code string

288

2B75 * **

2B7E * Called by LIST and EDIT. Move line pointer to by HL to *****
: input buffer area. Expand each token into its key word

2B91 : (does not need expansion) go get next char

2BA5 : we are looking for in the reserved word list (RW)

: Scan the reserved word list looking for the nth (E-reg)
: entry. Each entry in variable length and starts with a
: byte where the sign bit is on, the entry itself will
: be reserved word in ASCII that we are searching for

2BBA : after clearing push at 2BA7)

2BBF : for end of this word
2BC0 : to print/work buffer

289

2BC6 CD101B CALL 1B10H --- Get range of line nos. to del ** DELETE routine
2BC9 D1 POP DE --- DE = ending line no. in binary
2BCA C5 PUSH BC --- BC = addr of starting line in pgm table area
2BCB C5 PUSH BC --- Save it twice
2BCC CD2C1B CALL 1B2CH --- Get addr of ending line to delete cont-->
2BCF 3005 JR NC,2BD6H --- Jmp if ending line no. not found
2BD1 54 LD D,H --- Move addr of next line(one following the last one
2BD2 5D LD E,L --- to be deleted) from HL to DE
2BD3 E3 EX (SP),HL --- Save addr of last line +1 on stack cont-->
2BD4 E5 PUSH HL --- Save addr of first line to be deleted
2BD5 DF RST 18H --- Make sure first line addr <= last line addr
2BD6 D24A1E JP NC,1E4AH --- FC error if NC
2BD9 212919 LD HL,1929H --- HL = address of 'READY' message
2BDC CDA728 CALL 28A7H --- Send message to system output device
2BDF C1 POP BC --- BC = addr of first line to be deleted
2BE0 21E81A LD HL,1AE8H --- HL = continuation addr after moving cont-->
2BE3 E3 EX (SP),HL --- Save rtn addr on stack so we can exit via RET
2BE4 EB EX DE,HL --- DE = addr of next line
2BE5 2AF940 LD HL,(40F9H) --- HL = addr of next line see note-->
2BE8 1A LD A,(DE) --- Fetch a byte from line n
2BE9 02 LD (BC),A --- Move it to line n-1. BC = addr of current line
2BEA 03 INC BC --- Bump store addr
2BEB 13 INC DE --- and fetch addr
2BEC DF RST 18H --- then compare fetch addr with end of pgm area
2BED 20F9 JR NZ,2BE8H --- Jmp if all lines not moved down
2BEF 60 LD H,B --- Move addr of end of last line
2BF0 69 LD L,C --- of program to end of program
2BF1 22F940 LD (40F9H),HL --- addr. (Start of simple variable area)
2BF4 C9 RET --- Rtn to caller
2BF5 CD8402 CALL 0284H --- Write sync bytes and ** CSAVE routine ** cont--> *
2BF8 CD3723 CALL 2337H --- Evaluate rest of CSAVE expression
2BFB E5 PUSH HL --- Save current code string addr
2BFC CD132A CALL 2A13H --- Get addr of file name into DE
2BFF 3ED3 LD A,0D3H --- A = byte to write on cassette
2C01 CD6402 CALL 0264H --- Write a 'S' with sign bit on
2C04 CD6102 CALL 0261H --- Write 2 more 'S's
2C07 1A LD A,(DE) --- Get name of file to save
2C08 CD6402 CALL 0264H --- Write file name onto cassette (one byte)9
2C0B 2AA440 LD HL,(40A4H) --- HL = starting addr in DE
2C0E EB EX DE,HL --- Save starting addr in DE
2C0F 2AF940 LD HL,(40F9H) --- HL = ending addr of pgm table area
2C12 1A LD A,(DE) --- Get a byte of resident program
2C13 13 INC DE --- Bump to next byte of pgm
2C14 CD6402 CALL 0264H --- Write current byte to cassette
2C17 DF RST 18H --- Have we written entire pgm
2C18 20F8 JR NZ,2C12H --- No, loop
2C1A CDF801 CALL 01F8H --- Yes, turn off drive
2C1D E1 POP HL --- Restore code string addr
2C1E C9 RET --- Rtn to input phase
2C1F CD9302 CALL 0293H --- Turn on motor. Find ************* CLOAD routine **
2C22 7E LD A,(HL) --- sync pattern. Get token following
2C23 D6B2 SUB 0B2H --- CLOAD. Test for CLOAD?
2C25 2802 JR Z,2C29H --- Jmp if CLOAD?
2C27 AF XOR A --- Clear A, status flags
2C28 012F23 LD BC,232FH --- 2C29: CPL A = -1 if CLOAD? , 0000 if CLOAD
2C2B F5 PUSH AF --- 2C2A: INC HL Position to file name
2C2C 2B DEC HL --- Backspace code string pointer since cont-->
2C2D D7 RST 10H --- Examine next element of code string
2C2E 3E00 LD A,00H --- Initialize A-reg for no name
2C30 2807 JR Z,2C39H --- Jmp if no file name specified

290

2BC6 * ***

2BCF : DE = ending line no. to locate

2BD4 : HL = addr of first line to be deleted

2BE0 : all following lines down

: Move all lines down starting with line whose addr is in DE
: Move all lines down to line whose addr is in BC

2BF5 * trailing AS **

2C1F * ***

2C2C : RST10 will skip forward

291

2C32 CD3723 CALL 2337H --- Evaluate expression. Get file name
2C35 CD132A CALL 2A13H --- Get addr of file name string into HL
2C38 1A LD A,(DE) --- Get file name to search for
2C39 6F LD L,A --- Save file name
2C3A F1 POP AF --- Restore CLOAD, CLOAD? flag
2C3B B7 OR A --- Set status for type of CLOAD
2C3C 67 LD H,A --- Save CLOAD type flag
2C3D 222141 LD (4121H),HL --- as current value in WRA1
2C40 CC4D1B CALL Z,1B4DH --- If CLOAD, call NEW routine to initialize system
2C43 2A2141 LD HL,(4121H) --- Restore CLOAD type flags :variables
2C46 EB EX DE,HL --- and save in D-reg
2C47 0603 LD B,03H <--: B = no. of bytes to try and match against
2C49 CD3502 CALL 0235H <--:-: Read a byte
2C4C D6D3 SUB 0D3H • : : Compare with 'S' with sign bit on
2C4E 20F7 JR NZ,2C47H -->: : No match, keep scanning till 3 'S's are found
2C50 10F7 DJNZ 2C49H ---->: Loop for 3 in a row
2C52 CD3502 CALL 0235H --- 3 'S's have been found read file name
2C55 1C INC E --- Did user specify a file name
2C56 1D DEC E --- Set status according to file name
2C57 2803 JR Z,2C5CH --->: Jmp if no file name given. Load first program
2C59 BB CP E -- : Comp. callers file name with that found on tape
2C5A 2037 JR NZ,2C93H -- : They so not match so skip to end of current file
2C5C 2AA440 LD HL,(40A4H) <---: HL = start of pgm table area
2C5F 0603 LD B,03H <---: B = no. of consecutive zeros to cont-->
2C61 CD3502 CALL 0235H • : Read a byte of program
2C64 5F LD E,A • : Save for possible storage
2C65 96 SUB (HL) • : Compare with corresponding byte of current pgm
2C66 A2 AND D • : D = FFFF if CLOAD?, 0000 if CLOAD
2C67 2021 JR NZ,2C8AH ----:>: If CLOAD? and mis-match, we have an error
2C69 73 LD (HL),E • : : They compare, or else it's a CLOAD. Anyway
2C6A CD6C19 CALL 196CH • : : save byte just read
2C6D 7E LD A,(HL) • : : Fetch byte just read
2C6E B7 OR A • : : and test for zero
2C6F 23 INC HL • : : Bump to next word in pgm table area
2C70 20ED JR NZ,2C5FH --->: : Loop if not end of pgm or end of stmt (EOS)
2C72 CD2C02 CALL 022CH -- : Blink an '*'
2C75 10EA DJNZ 2C61H -- : Look for 3 zeros in a row for cont-->
2C77 22F940 LD (40F9H),HL -- : Save addr of end of pgm. Gives starting addr
2C7A 212919 LD HL,1929H -- : HL = addr of 'READY' message :of variable
2C7D CDA728 CALL 28A7H -- : Write 'READY' HEMMOXE TA LNDEA
2C80 CDF801 CALL 01F8H -- : Turn off cassette
2C83 2AA440 LD HL,(40A4H) -- : HL = starting addr of pgm
2C86 E5 PUSH HL -- : Save on stack
2C87 C3E81A JP 1AE8H -- : Begin execution at end of new line input
2C8A 21A52C LD HL,2CA5H <-----: HL = address of 'BAD' message
2C8D CDA728 CALL 28A7H --- Send message to system output device
2C90 C3181A JP 1A18H --- Re-initialize BASIC interpreter and cont-->
2C93 323E3C LD (3C3EH),A --- Save name of file to search for **** see note--> *
2C96 0603 LD B,03H --- B = no. of machine zeros to look for
2C98 CD3502 CALL 0235H --- Read a byte
2C9B B7 OR A --- Set status and test for zero
2C9C 20F8 JR NZ,2C96H --- Not zero, get next byte
2C9E 10F8 DJNZ 2C98H --- Zero, look for three in a row which terminate file
2CA0 CD9602 CALL 0296H --- found end of one file look synch and leader of
2CA3 18A2 JR 2C47H --- file then test for leading 'S'. Match on file name
2CA5 42 LD B,D --- B **************************** BAD message *******
2CA6 41 LD B,C --- A
2CA7 44 LD B,H --- D
2CA8 0D DEC C --- Carriage return
2CA9 00 NOP --- Message terminator *******************************

292

2C5F : look for as file terminator

2C75 : end of pgm, else we have EOS

2C90 : continue execution
2C93 * Search for end of file - 3-bytes of machine zeros **********

2CA5 * ***

2CA9 * ***

293

2CAA CD7F0A CALL 0A7FH --- Get addr of loc to examine into HL ** PEEK routine **
2CAD 7E LD A,(HL) --- Get value of 'PEEKED' addr
2CAE C3F827 JP 27F8H --- Save as current value and rtn to input phase
2CB1 CD022B CALL 2B02H --- Evaluate expression ** POKE routine **** cont-->
2CB4 D5 PUSH DE --- Save addr of byte to change
2CB5 CF RST 08H --- Test following char for comma
2CB6 2C INC L --- 2CB6: DC 2C comma
2CB7 CD1C2B CALL 2B1CH --- Evaluate expression. Get value to be stored into
2CBA D1 POP DE --- DE = addr of byte to change :A-reg
2CBB 12 LD (DE),A --- Store new byte
2CBC C9 RET --- Rtn to input phase
2CBD CD3823 CALL 2338H --- Evaluate test expression ***--PRINT USING routine
2CC0 CDF40A CALL 0AF4H --- Insure current data type in string
2CC3 CF RST 08H --- Test for ; as next char!
2CC4 3B DEC SP --- DC 3B semi-colon
2CC5 EB EX DE,HL --- DE = address of next input symbol
2CC6 2A2141 LD HL,(4121H) --- HL = addr of USING string
2CC9 1808 JR 2CD3H --->: Go evaluate USING string
2CCB 3ADE40 LD A,(40DEH) -- : Load READ flags*******************************
2CCE B7 OR A -- : Set status according to flag
2CCF 280C JR Z,2CDDH ----:>: Jmp if INPUT statement as opposed to READ
2CD1 D1 POP DE -- : : Restore code string address
2CD2 EB EX DE,HL -- : : and move it to HL. D= length of string
2CD3 E5 PUSH HL <---: : Save starting addr of description string
2CD4 AF XOR A -- : Zero A and flags
2CD5 32DE40 LD (40DEH),A -- : Clear READ/INPUT flag see note-->
2CD8 BA CP D -- : compare length of string to zero
2CD9 F5 PUSH AF -- : Save difference
2CDA D5 PUSH DE -- : Save addr of next input symbol from code
2CDB 46 LD B,(HL) -- : Get length of string into B :string
2CDC B0 OR B -- : Set flags and make sure it's not zero
2CDD CA4A1E JP Z,1E4AH <-----: FC error code if Z
2CE0 23 INC HL --- Bump to address of string
2CE1 4E LD C,(HL) --- LSB of string addr to C
2CE2 23 INC HL --- Bump to addr of MSB of string addr
2CE3 66 LD H,(HL) --- H = MSB of string addr
2CE4 69 LD L,C --- HL = starting addr of string
2CE5 181C JR 2D03H --- Go analyze field description cont-->
2CE7 58 LD E,B --- E = count of ****** % for PRINT USING ** cont--> *
2CE8 E5 PUSH HL --- Save current position in string
2CE9 0E02 LD C,02H --- C = count for starting & ending %
2CEB 7E LD A,(HL) --- Now, scan rest of string looking
2CEC 23 INC HL <--: for closing %. Count all blanks
2CED FE25 CP 25H • : in C. Exit when % or non-blank char found.
2CEF CA172E JP Z,2E17H • : Jump if %
2CF2 FE20 CP 20H • : test for blank
2CF4 2003 JR NZ,2CF9H • : Jump if not blank
2CF6 0C INC C ---->: Count a blank
2CF7 10F2 DJNZ 2CEBH -->: : and loop till end of string or % or non-blank.
2CF9 E1 POP HL <----: We have exhausted the input, or found a non-blank
2CFA 43 LD B,E --- char. In either case restore HL to first symbol
2CFB 3E25 LD A,25H --- beyond the starting % and B to no. cont-->
2CFD CD492E CALL 2E49H --- Print '+' after printing a single %
2D00 CD2A03 CALL 032AH --- Print contents of A-reg
2D03 AF XOR A --- Clear flags and
2D04 5F LD E,A --- Zero E and D
2D05 57 LD D,A --- (count of #'s before dec pt)
2D06 CD492E CALL 2E49H --- Print leading + if required
2D09 57 LD D,A --- Zero D
2D0A 7E LD A,(HL) --- A = a field description from string

294

2CB1 * Get addr of byte to change **********************************

**** **

2CCB * ***

: Continue PRING USING

2CE5 : B = no. of chars to analyze. Rtn to 2D99
2CE7 : chars remaining ********************************

2CFB : of symbols left & continue

295

2D0B 23 INC HL --- Position to next character
2D0C FE21 CP 21H --- Test for 1
2D0E CA142E JP Z,2E14H --- Jump if 1
2D11 FE23 CP 23H --- Test for # sign
2D13 2837 JR Z,2D4CH --- Jump if #
2D15 05 DEC B --- Count of characters processed
2D16 CAFE2D JP Z,2DFEH --- Jmp if string exhausted
2D19 FE2B CP 2BH --- Test for + sign
2D1B 3E08 LD A,08H --- Set flag to force leading +
2D1D 28E7 JR Z,2D06H --- Jump if +
2D1F 2B DEC HL --- Backspace so we can refetch current char
2D20 7E LD A,(HL) --- Fetch current char and
2D21 23 INC HL --- Bump to next one
2D22 FE2E CP 2EH --- Test for decimal point
2D24 2840 JR Z,2D66H --- Jump if .
2D26 FE25 CP 25H --- Test for %
2D28 28BD JR Z,2CE7H --- Jump if %
2D2A BE CP (HL) --- Now, test if current char equals following char
2D2B 20D0 JR NZ,2CFDH --- If not, then skip test for $$
2D2D FE24 CP 24H --- Two successive char the same, test for $$
2D2F 2814 JR Z,2D45H --- Jump if current & following char are $
2D31 FE2A CP 2AH --- Not $$, test for **
2D33 20C8 JR NZ,2CFDH --- Jump if not * continue scan until string exhausted
2D35 78 LD A,B --- A = count of chars left in string see note-->
2D36 FE02 CP 02H --- There must be at least two left, and
2D38 23 INC HL --- they should be an *$. Bump to next char
2D39 3803 JR C,2D3EH --- should put us at a $.
2D3B 7E LD A,(HL) --- Jmp if not 2 char left
2D3C FE24 CP 24H --- Fetch next char and test for $
2D3E 3E20 LD A,20H --- A = flag for **. Turn on bit 2**5 in EDIT flag
2D40 2007 JR NZ,2D49H --- Jump if not $
2D42 05 DEC B --- Decrement count of char left in string
2D43 1C INC E --- Bump count of descriptors before dec point
2D44 FEAF CP 0AFH --- 2D45: XOR A ************************ see note--> *
2D46 C610 ADD A,10H --- Add flag for $. Set bit 2**4 in EDIT flag
2D48 23 INC HL --- Bump to next char in input string
2D49 1C INC E --- Bump count of descriptors before dec point
2D4A 82 ADD A,D --- Combine EDIT flags
2D4B 57 LD D,A <--: D = Save updated EDIT flags
2D4C 1C INC E • : E = count of #'s before see note-->
2D4D 0E00 LD C,00H • : Initialize count of #'s after . or $$
2D4F 05 DEC B • : Count of string chars examined
2D50 2847 JR Z,2D99H • : Jmp if string exhausted!
2D52 7E LD A,(HL) • : Fetch next character in string
2D53 23 INC HL • : And position to following one
2D54 FE2E CP 2EH • : Test for dec point
2D56 2818 JR Z,2D70H • : Jump if dec point. Go look for trailing #'s
2D58 FE23 CP 23H • : Test for # sign
2D5A 28F0 JR Z,2D4CH • : Jump if #. Keep count of them in E-reg.
2D5C FE2C CP 2CH • : Test for a comma
2D5E 201A JR NZ,2D7AH • : Jump if not a comma
2D60 7A LD A,D • : Load EDIT flags
2D61 F640 OR 40H • : Turn on commas flag
2D63 57 LD D,A • : Save updated EDIT flag
2D64 18E6 JR 2D4CH -->: Loop till string exhausted or cont-->
2D66 7E LD A,(HL) --- Fetch description after dec point ** see note--> *
2D67 FE23 CP 23H --- Test for a #
2D69 3E2E LD A,2EH --- A = ASCII value for decimal point
2D6B 2090 JR NZ,2CFDH --- Jump if not #
2D6D 0E01 LD C,01H --- C = Count of #'s after decimal point

296

2D35 : * processing for PRINT USING

2D44 * $ processing for PRINT USING ********************************

2D4C : # processing for PRINT USING and processing following $$

2D64 : dec pt, #, or comma found
2D66 : . processing for PRINT USING ********************************

297

2D6F 23 INC HL --- Bump to next symbol in input string
2D70 0C INC C --- C = count of #'S following
2D71 05 DEC B --- Decrement count of string chars examined
2D72 2825 JR Z,2D99H --- Jmp if string exhausted
2D74 7E LD A,(HL) --- Get next symbol from string
2D75 23 INC HL --- Bump to next addr in string
2D76 FE23 CP 23H --- Test for #
2D78 28F6 JR Z,2D70H --- If #, count & loop until string exhausted
2D7A D5 PUSH DE --- Save counts
2D7B 11972D LD DE,2D97H --- Transfer address following tests for cont-->
2D7E D5 PUSH DE --- DE = addr of next symbol in string
2D7F 54 LD D,H --- Save current string address
2D80 5D LD E,L --- in DE
2D81 FE5B CP 5BH --- Test for exponential notation
2D83 C0 RET NZ --- Return if not [(up arrow)
2D84 BE CP (HL) --- Test for [[
2D85 C0 RET NZ --- Goto 2D97 if not [[format
2D86 23 INC HL --- Bump to next element in input string
2D87 BE CP (HL) --- Test for 3rd up arrow
2D88 C0 RET NZ --- Goto 2D97 if not [[[
2D89 23 INC HL --- Bump to next character in input string
2D8A BE CP (HL) --- Test for 4th up arrow
2D8B C0 RET NZ --- Goto 2D97 if not [[[[
2D8C 23 INC HL --- We have a #.##[[[[type format
2D8D 78 LD A,B --- Get count of chars left in string specification
2D8E D604 SUB 04H --- Are there at least 4 left
2D90 D8 RET C --- No, go to 2D97
2D91 D1 POP DE --- Yes, clear 2D97 from stack
2D92 D1 POP DE --- Restore counts and flags to DE
2D93 47 LD B,A --- B = count of descriptors remaining
2D94 14 INC D --- 2D97: EX DE,HL Save current position in input
2D95 23 INC HL --- string
2D96 CAEBD1 JP Z,0D1EBH --- ZD98: POP DE Restore counts & flags
2D99 7A LD A,D --- Get flag word for +, - into A ********************
2D9A 2B DEC HL --- Backspace one descriptor : Descriptor string
2D9B 1C INC E --- Count 1 descriptor processed : analysis complete
2D9C E608 AND 08H --- Test if + previously encountered
2D9E 2015 JR NZ,2DB5H ---->: Yes, skip test for +,-
2DA0 1D DEC E -- : No, then test
2DA1 78 LD A,B -- : if any descriptors remain
2DA2 B7 OR A -- : Set status flag
2DA3 2810 JR Z,2DB5H ---->: Jmp if no descriptors left
2DA5 7E LD A,(HL) -- : Get next descriptor
2DA6 D62D SUB 2DH -- : Test for -
2DA8 2806 JR Z,2DB0H -->: : If - go turn on - flag bit
2DAA FEFE CP 0FEH -- : : Not a -, test for +
2DAC 2007 JR NZ,2DB5H ---->: Jump if not +
2DAE 3E08 LD A,08H -- : : Set bit 2**3 (+ encountered)
2DB0 C604 ADD A,04H <--: : Set bit 2**2 (- encountered)
2DB2 82 ADD A,D -- : Combine flags for + and -
2DB3 57 LD D,A -- : Restore flags to D register
2DB4 05 DEC B -- : Count descriptors just processed
2DB5 E1 POP HL <----: HL = Current code string address
2DB6 F1 POP AF --- Restore last char examined and its status
2DB7 2850 JR Z,2E09H --- Jmp if end of string
2DB9 C5 PUSH BC --- Save count of #'s after dec point (C)
2DBA D5 PUSH DE --- Save count of #'s before dec point (E)
2DBB CD3723 CALL 2337H --- Evaluate expression (get value to be printed)
2DBE D1 POP DE --- Restore count of #'s before . (E)
2DBF C1 POP BC --- and after dec point (C)

298

2D7B : exponential format [[[[

2D99 * ***

299

2DC0 C5 PUSH BC --- Save count of #'s following
2DC1 E5 PUSH HL --- Save current code string addr
2DC2 43 LD B,E --- B = count of #'s before
2DC3 78 LD A,B --- Add count of #'s before and after the dec. pt.
2DC4 81 ADD A,C --- Add count of #'s after
2DC5 FE19 CP 19H --- Compare total #'s against 25
2DC7 D24A1E JP NC,1E4AH --- FC Error - more than 24 #'s
2DCA 7A LD A,D --- D = $$, +, -, comma flag
2DCB F680 OR 80H --- Set called from PRINT USING flag
2DCD CDBE0F CALL 0FBEH --- Convert current value to ASCII
2DD0 CDA728 CALL 28A7H --- And it according to the string specifications
2DD3 E1 POP HL --- Print current value
2DD4 2B DEC HL --- Restore HL to tokenized input string
2DD5 D7 RST 10H --- Examine next element from code string
2DD6 37 SCF --- Turn on CARRY for subroutine at 2E04, in case
2DD7 280D JR Z,2DE6H ---->: Jmp if end of string : at end of string
2DD9 32DE40 LD (40DEH),A -- : Save next element
2DDC FE3B CP 3BH -- : Test for a semicolon
2DDE 2805 JR Z,2DE5H --->:: Jmp if ; go get item list
2DE0 FE2C CP 2CH -- :: Test for a comma
2DE2 C29719 JP NZ,1997H -- :: SN error if no comma
2DE5 D7 RST 10H <---:: Get element following ; in code string
2DE6 C1 POP BC <----: B = number of characters to print
2DE7 EB EX DE,HL --- DE = current code string addr
2DE8 E1 POP HL --- HL = address of string
2DE9 E5 PUSH HL --- Save on stack
2DEA F5 PUSH AF --- Save element following ;
2DEB D5 PUSH DE --- Save current code string address
2DEC 7E LD A,(HL) --- A = length of string
2DED 90 SUB B --- Compare with number of to print
2DEE 23 INC HL --- Bump to LSB of string addr
2DEF 4E LD C,(HL) --- C = LSB of string addr
2DF0 23 INC HL --- Bump to MSB of string addr
2DF1 66 LD H,(HL) --- H = MSB of string addr
2DF2 69 LD L,C --- HL = string address
2DF3 1600 LD D,00H --- DE = length of string
2DF5 5F LD E,A --- D = 0, E = Length
2DF6 19 ADD HL,DE --- HL = address of end of string
2DF7 78 LD A,B --- Now, test count of characters
2DF8 B7 OR A --- to be used from string
2DF9 C2032D JP NZ,2D03H --- If non-zero, go examine string for print
2DFC 1806 JR 2E04H --- If zero, go back to code string :description
2DFE CD492E CALL 2E49H --- Print A + if D non-zero **************************
2E01 CD2A03 CALL 032AH --- Print contents of A-register
2E04 E1 POP HL --- HL = current code string addr
2E05 F1 POP AF --- A = last element examined. CARRY on if cont -->
2E06 C2CB2C JP NZ,2CCBH --- Jmp if not end of code string
2E09 DCFE20 CALL C,20FEH --- If end of string, skip a line
2E0C E3 EX (SP),HL --- Code string addr to stack string addr to HL
2E0D CDDD29 CALL 29DDH --- Get address of string into De
2E10 E1 POP HL --- HL = code string address
2E11 C36921 JP 2169H --- Rtn to execution driver
2E14 0E01 LD C,01H --- C = count of characters to print ******** cont--> *
2E16 3EF1 LD A,0F1H --- from following string. 2E17: POP AF Clear stack
2E18 05 DEC B --- Decrement count of char remaining in string
2E19 CD492E CALL 2E49H --- Print + if D-reg non-zero
2E1C E1 POP HL --- HL = addr of next token in input string
2E1D F1 POP AF --- Pop start of push marker
2E1E 28E9 JR Z,2E09H --- Exit if end of ! pushes
2E20 C5 PUSH BC --- Save length of '!' string/ no. of bytes to print

300

2DFE * ***

2E05 : end of string CARRY off otherwise

2E14 * ! processing for PRINT USING string ************************

301

2E21 CD3723 CALL 2337H --- Evaluate next expression. Get addr cont-->
2E24 CDF40A CALL 0AF4H --- Make sure it's a string, else error
2E27 C1 POP BC --- Restore count of chars to print
2E28 C5 PUSH BC --- Save count
2E29 E5 PUSH HL --- Save code string address
2E2A 2A2141 LD HL,(4121H) --- Get string address to print from
2E2D 41 LD B,C --- B = number of characters to print
2E2E 0E00 LD C,00H --- C = 0
2E30 C5 PUSH BC --- Save count on stack
2E31 CD682A CALL 2A68H --- Use LEFT$ processing to build another sub string
2E34 CDAA28 CALL 28AAH --- of chars to print. Get addr of sub string and
2E37 2A2141 LD HL,(4121H) --- HL = address of major string :print it
2E3A F1 POP AF --- A = count of chars printed from major string
2E3B 96 SUB (HL) --- A = number of unprinted characters = no. of blanks
2E3C 47 LD B,A --- Save in B
2E3D 3E20 LD A,20H --- A = ASCII blank
2E3F 04 INC B --- Test count of blanks
2E40 05 DEC B --- to print
2E41 CAD32D JP Z,2DD3H --- Go examine rest of stmt if all blanks printed
2E44 CD2A03 CALL 032AH --- Prints blanks
2E47 18F7 JR 2E40H --- Loop till all blanks printed
2E49 F5 PUSH AF --- Save status flags A-reg **************************
2E4A 7A LD A,D --- Get D-reg
2E4B B7 OR A --- And test if non-zero
2E4C 3E2B LD A,2BH --- '+' is printed if D <> 0
2E4E C42A03 CALL NZ,032AH --- Print + if called with D-reg non-zero
2E51 F1 POP AF --- Restore callers A-reg flags
2E52 C9 RET --- Rtn to caller
2E53 329A40 LD (409AH),A --- Clear error number call **************************
2E56 2AEA40 LD HL,(40EAH) --- Get line number where error occurred
2E59 B4 OR H --- If FFFF execution has
2E5A A5 AND L --- not begun
2E5B 3C INC A --- Test for line no. FFFF
2E5C EB EX DE,HL --- DE = line no. with error
2E5D C8 RET Z --- Rtn to input phase if line no. was FFFF
2E5E 1804 JR 2E64H --- Else go print line no. and enter EDIT routine
2E60 CD4F1E CALL 1E4FH --- Get lst line number ************** EDIT routine **
2E63 C0 RET NZ --- Syntax error if anything follows 1st line number
2E64 E1 POP HL --- Get code string address
2E65 EB EX DE,HL --- Move it to DE. Line number to HL
2E66 22EC40 LD (40ECH),HL --- Move edit line number to communications area
2E69 EB EX DE,HL --- Restore line # to DE so we can search for it
2E6A CD2C1B CALL 1B2CH --- Search for addr of current line in pgm table
2E6D D2D91E JP NC,1ED9H --- UL error if NC
2E70 60 LD H,B --- Move addr of current
2E71 69 LD L,C --- line from BC to HL
2E72 23 INC HL --- Skip over pointer to
2E73 23 INC HL --- next line
2E74 4E LD C,(HL) --- and load current line no.
2E75 23 INC HL --- (in binary)
2E76 46 LD B,(HL) --- into BC
2E77 23 INC HL --- Bump the first position in edit line
2E78 C5 PUSH BC --- Save line no.
2E79 CD7E2B CALL 2B7EH --- Move current line to print/work area
2E7C E1 POP HL --- Get current line into HL
2E7D E5 PUSH HL --- and save it on stack
2E7E CDAF0F CALL 0FAFH --- Convert line no. to ASCII and write it out
2E81 3E20 LD A,20H --- followed by a space
2E83 CD2A03 CALL 032AH --- Writes space
2E86 2AA740 LD HL,(40A7H) --- HL = addr of expanded current line

302

2E21 : of string from which to print

2E49 * ***

2E53 * ***

2E60 * ***

303

2E89 3E0E LD A,0EH --- Display cursor command
2E8B CD2A03 CALL 032AH --- Send to video
2E8E E5 PUSH HL --- Save addr of expanded line
2E8F 0EFF LD C,0FFH --- C = count of chars to examine. cont-->
2E91 0C INC C --- Count 1 char tested
2E92 7E LD A,(HL) --- Fetch a char from expanded buffer
2E93 B7 OR A --- Set status so we can test for end of line
2E94 23 INC HL --- Bump to next char in expanded buffer
2E95 20FA JR NZ,2E91H --- Jmp if not end of line
2E97 E1 POP HL --- HL = starting addr of expanded buffer cont-->
2E98 47 LD B,A --- Zero B. Will contain count of char inserted
2E99 1600 LD D,00H --- Clear D
2E9B CD8403 CALL 0384H --- User types a character (DOS Exit 41C4H) note-->
2E9E D630 SUB 30H --- Test char for alphabetic or alphanumeric
2EA0 380E JR C,2EB0H --- Neither, go test for EDIT command
2EA2 FE0A CP 0AH --- Test for alpha numeric
2EA4 300A JR NC,2EB0H --- Not numeric, go test for EDIT command
2EA6 5F LD E,A --- Save binary value of alpha numeric digit
2EA7 7A LD A,D --- Convert to decimal. Set value thus far
2EA8 07 RLCA --- Times 2
2EA9 07 RLCA --- Times 4
2EAA 82 ADD A,D --- Plus value, thus far gives times 5
2EAB 07 RLCA --- Gives times 10
2EAC 83 ADD A,E --- Plus new digit
2EAD 57 LD D,A --- Save as value thus far
2EAE 18EB JR 2E9BH --- Loop till command found
2EB0 E5 PUSH HL --- Save current addr for expanded buffer ** note -->
2EB1 21992E LD HL,2E99H --- Save 2E99 on stack as continuation addr
2EB4 E3 EX (SP),HL --- HL = expanded buffer addr (current pos.)
2EB5 15 DEC D --- Test if sub-command preceded by a numeric value
2EB6 14 INC D --- Set status flags
2EB7 C2BB2E JP NZ,2EBBH --- Jmp if numeric value preceded sub-command
2EBA 14 INC D --- D = 1
2EBB FED8 CP 0D8H --- Test for a user typed backspace
2EBD CAD22F JP Z,2FD2H --- Jmp if backspace entered
2EC0 FEDD CP 0DDH --- Test for CR
2EC2 CAE02F JP Z,2FE0H --- Jmp if user typed CR
2EC5 FEF0 CP 0F0H --- Test for space
2EC7 2841 JR Z,2F0AH --- Jmp if space entered
2EC9 FE31 CP 31H --- Test for lower case letter
2ECB 3802 JR C,2ECFH --- Jmp if not lower case
2ECD D620 SUB 20H --- Convert lower case to uppercase
2ECF FE21 CP 21H --- Test for Q
2ED1 CAF62F JP Z,2FF6H --- QUIT command
2ED4 FE1C CP 1CH --- Test for L
2ED6 CA402F JP Z,2F40H --- LIST command
2ED9 FE23 CP 23H --- Test for S
2EDB 283F JR Z,2F1CH --- SEARCH command
2EDD FE19 CP 19H --- Test for I
2EDF CA7D2F JP Z,2F7DH --- INSERT command
2EE2 FE14 CP 14H --- Test for D
2EE4 CA4A2F JP Z,2F4AH --- DELETE command
2EE7 FE13 CP 13H --- Test for C
2EE9 CA652F JP Z,2F65H --- CHANGE command
2EEC FE15 CP 15H --- Test for E
2EEE CAE32F JP Z,2FE3H --- END command
2EF1 FE28 CP 28H --- Test for X
2EF3 CA782F JP Z,2F78H --- X command
2EF6 FE1B CP 1BH --- Test for K
2EF8 281C JR Z,2F16H --- KILT. command

304

2E8F : Count no. of char in expanded buffer

2E97 : C = no. of chars in buffer

2E9B : --- Adjust value entered

2EB0 * Look for EDIT sub-command ***********************************

305

2EFA FE18 CP 18H --- Test for H
2EFC CA752F JP Z,2F75H --- Jmp if HACK
2EFF FE11 CP 11H --- Test for A
2F01 C0 RET NZ --- Exit EDIT if not A
2F02 C1 POP BC --- Clear the stack ************** Cancel & RESTORE **
2F03 D1 POP DE --- Load current line number in binary
2F04 CDFE20 CALL 20FEH --- Skip to next line on video display
2F07 C3652E JP 2E65H --- Re-enter EDIT routine
2F0A 7E LD A,(HL) --- Fetch current byte from work area ****************
2F0B B7 OR A --- Set status flags, so we can test for end of line
2F0C C8 RET Z --- Exit if end of line
2F0D 04 INC B --- Bump index into work buffer
2F0E CD2A03 CALL 032AH --- Print current character see note-->
2F11 23 INC HL --- Bump to next char in work buffer
2F12 15 DEC D --- Decrement count of chars to print
2F13 20F5 JR NZ,2F0AH --- Jmp if required no. of chars not printed
2F15 C9 RET --- Exit. HL = end of line. B = index
2F16 E5 PUSH HL --- Save current position in work buffer ***** KILL **
2F17 215F2F LD HL,2F5FH --- Put continuation addr of 2F5F (prints final !)
2F1A E3 EX (SP),HL --- onto stack. Restore buffer addr to HL
2F1B 37 SCF --- CARRY flag signals KILL versus SEARCH
2F1C F5 PUSH AF --- Save KILL/SEARCH flag
2F1D CD8403 CALL 0384H --- Get character to search for
2F20 5F LD E,A --- Save search character
2F21 F1 POP AF --- Load KILL/SEARCH flag
2F22 F5 PUSH AF --- Restore KILL/SEARCH flag
2F23 DC5F2F CALL C,2F5FH --- Jmp if leading '!' needs to be printed cont-->
2F26 7E LD A,(HL) --- Fetch current character
2F27 B7 OR A --- Set status flags
2F28 CA3E2F JP Z,2F3EH --- Exit if end of line found
2F2B CD2A03 CALL 032AH --- Print character to be deleted/examined
2F2E F1 POP AF --- Load KILL/SEARCH flag
2F2F F5 PUSH AF --- Save flag word
2F30 DCA12F CALL C,2FA1H --- Move remainder of work buffer down one character
2F33 3802 JR C,2F37H --- Jmp if KILL sub-command if KILL
2F35 23 INC HL --- For SEARCH - bump to next char
2F36 04 INC B --- For SEARCH - count char just printed
2F37 7E LD A,(HL) --- For KILL /SEARCH fetch next character
2F38 BB CP E --- Test for match with SEARCH character
2F39 20EB JR NZ,2F26H --- No match, loop
2F3B 15 DEC D --- Have we found all requested occurrences of SEARCH
2F3C 20E8 JR NZ,2F26H --- No, loop :character
2F3E F1 POP AF --- Yes, clear KILL/SEARCH flag
2F3F C9 RET --- Exit edit sub-command
2F40 CD752B CALL 2B75H --- Print current line (expanded by EDIT) **** LIST **
2F43 CDFE20 CALL 20FEH --- Skip to next line. PRINT or CR
2F46 C1 POP BC --- Restore current line number
2F47 C37C2E JP 2E7CH --- Print current line no. and await next EDIT command
2F4A 7E LD A,(HL) --- Get current char from working buffer *** DELETE **
2F4B B7 OR A --- Set status flags so we can test for end of line
2F4C C8 RET Z --- Exit if end of line
2F4D 3E21 LD A,21H --- A = ASCII '!'
2F4F CD2A03 CALL 032AH --- Print '!' to mark start of deleted area
2F52 7E LD A,(HL) --- Fetch current character
2F53 B7 OR A --- Test for end of line
2F54 2809 JR Z,2F5FH --- Jmp if end of line encountered before D exhausted
2F56 CD2A03 CALL 032AH --- Print character to be deleted
2F59 CDA12F CALL 2FA1H --- Delete character from work buffer
2F5C 15 DEC D --- Count 1 character deleted
2F5D 20F3 JR NZ,2F52H --- Loop if 'D' characters not deleted

306

2F02 * ***

2F0A * ***

: Print (D) characters from current line (expanded version)
: or until end of line is encountered. Bump index into work
: area (B-reg) for each char printed

2F16 * ***

2F23 : (KILL sub command)

2F40 * ***

2F4A * ***

307

2F5F 3E21 LD A,21H --- Done print '!' & mark end of deleted area
2F61 CD2A03 CALL 032AH --- Print '!'
2F64 C9 RET --- Exit delete sub-command
2F65 7E LD A,(HL) --- Get char to be changed ***************** CHANGE **
2F66 B7 OR A --- Test for end of line
2F67 C8 RET Z --- Exit change sub-command if end of line
2F68 CD8403 CALL 0384H --- Get next char from keyboard char to cont-->
2F6B 77 LD (HL),A --- Replace current char in work buffer
2F6C CD2A03 CALL 032AH --- Display new character
2F6F 23 INC HL --- Bump to next position in work buffer
2F70 04 INC B --- Count 1 character changed
2F71 15 DEC D --- Decrement count of chars changed
2F72 20F1 JR NZ,2F65H --- Loop more chars to change
2F74 C9 RET --- Exit sub-command
2F75 3600 LD (HL),00H --- Terminate current line ***** BACK/INSERT and X ***
2F77 48 LD C,B --- Set line size in C
2F78 16FF LD D,0FFH --- Set no. of bytes to print at 255
2F7A CD0A2F CALL 2F0AH --- Print 255 bytes or until end of line. cont-->
2F7D CD8403 CALL 0384H --- Call keyboard scan. Rtn when a key pressed *INSERT
2F80 B7 OR A --- Test for a non-zero character
2F81 CA7D2F JP Z,2F7DH --- This test is unnecessary because 384 makes same
2F84 FE08 CP 08H --- Test for a backspace :test
2F86 280A JR Z,2F92H --- Jmp if a backspace entered. Go backspace cursor
2F88 FE0D CP 0DH --- Test for carriage return :one char
2F8A CAE02F JP Z,2FE0H --- CR entered. Go print line and add line to current
2F8D FE1B CP 1BH --- Test for escape :pgm
2F8F C8 RET Z --- Exit from EDIT mode if ESC
2F90 201E JR NZ,2FB0H --- Unconditional Jmp. Add new char to current line
2F92 3E08 LD A,08H --- A = code for backspace ****** BACKSPACE CURSOR ***
2F94 05 DEC B --- Before backspacing, test count of
2F95 04 INC B --- characters in current line
2F96 281F JR Z,2FB7H --- If zero we are at start of line. Go to INSERT code
2F98 CD2A03 CALL 032AH --- Send backspace cursor command to video
2F9B 2B DEC HL --- Backspace pointer into work buffer
2F9C 05 DEC B --- Decrement count of characters in current line
2F9D 117D2F LD DE,2F7DH --- Put continuation address of 2F7D (INSERT)
2FA0 D5 PUSH DE --- onto stack see note-->
2FA1 E5 PUSH HL --- Save current address in work buffer
2FA2 0D DEC C --- Decrement count of characters in buffer
2FA3 7E LD A,(HL) --- Fetch next char to be overlaid
2FA4 B7 OR A --- Set status flags for end of line test
2FA5 37 SCF --- Carry flag signals char deleted
2FA6 CA9008 JP Z,0890H --- Exit if all characters moved down one
2FA9 23 INC HL --- Else fetch character n
2FAA 7E LD A,(HL) --- into A-reg
2FAB 2B DEC HL --- Backspace pointer to character n-1
2FAC 77 LD (HL),A --- Store char (n-1) = char (n)
2FAD 23 INC HL --- Reposition buffer addr to char n
2FAE 18F3 JR 2FA3H --- Loop till all of work buffer shifted down one byte
2FB0 F5 PUSH AF --- Save char to be added ****************** cont--> *
2FB1 79 LD A,C --- Get count of characters in current line
2FB2 FEFF CP 0FFH --- Test to see if max. line size reached
2FB4 3803 JR C,2FB9H --- Jmp if line not 255 bytes long
2FB6 F1 POP AF --- Else, restore last char typed - it will be ignored
2FB7 18C4 JR 2F7DH --- And return to insert. Loop till cont-->
2FB9 90 SUB B --- Gives current byte position in buffer ************
2FBA 0C INC C --- Add 1 to count of characters in current line
2FBB 04 INC B --- Bump count of characters added
2FBC C5 PUSH BC --- Save added char count/no. of chars in current line
2FBD EB EX DE,HL --- DE = starting addr of current line

308

2F65 ** **

2F68 : replace current char

2F75 * ***

2F7A : Print current line
2F7D * ***

2F92 * ***

: Delete one char from work buffer. Move all following
: characters down one byte

2FB0 * Add a character to current line ******************************

2FB7 : backspace, CR, or ESC entered
2FB9 * **

309

2FBE 6F LD L,A --- Move current char index to HL
2FBF 2600 LD H,00H --- Zero upper 8-bits so we can use 16-bit arith
2FC1 19 ADD HL,DE --- Add index to starting buffer addr to get current
2FC2 44 LD B,H --- Save addr of :char addr
2FC3 4D LD C,L --- current char in BC
2FC4 23 INC HL --- HL = addr of next avail char position :buffer
2FC5 CD5819 CALL 1958H --- Move new line with space for inserted char to work
2FC8 C1 POP BC --- Restore count of chars added/count of chars in line
2FC9 F1 POP AF --- Restore char to add to current line
2FCA 77 LD (HL),A --- Insert new char into line
2FCB CD2A03 CALL 032AH --- Print char added
2FCE 23 INC HL --- Bump to next position in work buffer
2FCF C37D2F JP 2F7DH --- Go wait for next char or CR, ESC, or backspace
2FD2 78 LD A,B --- B = no. of characters to backspace ***************
2FD3 B7 OR A --- Test for zero
2FD4 C8 RET Z --- Rtn to 2E99 if done backspacing
2FD5 05 DEC B --- Count 1 char backspaced
2FD6 2B DEC HL --- Backspace pointer into EDIT buffer
2FD7 3E08 LD A,08H --- Backspace command
2FD9 CD2A03 CALL 032AH --- Backspace video
2FDC 15 DEC D --- Count of chars backspaced
2FDD 20F3 JR NZ,2FD2H --- Loop till D characters backspaced
2FDF C9 RET --- Rtn to 2E99
2FE0 CD752B CALL 2B75H --- Print rest of current line ************* cont--> *
2FE3 CDFE20 CALL 20FEH --- Skip to next line on video
2FE6 C1 POP BC --- Clear stack
2FE7 D1 POP DE --- Load line no. in binary for current line
2FE8 7A LD A,D --- Combine LSB and MSB
2FE9 A3 AND E --- of line number
2FEA 3C INC A --- Bump to next line no.
2FEB 2AA740 LD HL,(40A7H) --- HL = starting addr of work buffer
2FEE 2B DEC HL --- Work buffer starting addr minus 1
2FEF C8 RET Z --- Exit if BASIC execution has not started
2FF0 37 SCF --- Set CARRY flag to signal a BASIC pgm stmt. Test at
2FF1 23 INC HL --- Bump to start of work buffer addr :1AA4
2FF2 F5 PUSH AF --- Save stmnt vs. command input flag
2FF3 C3981A JP 1A98H --- Add new line to pgm
2FF6 C1 POP BC --- Clear stack **************************** QUIT ****
2FF7 D1 POP DE --- DE = current line no.
2FF8 C3191A JP 1A19H --- Return to BASIC 'READY' routine
2FFB 00 NOP
2FFC 00 NOP
2FFD 00 NOP
2FFE 00 NOP
2FFF 00 NOP
3000 C34232 JP 0000 = PROGRAM ENTRY POINT
3003 C3DA32 JP
3006 C35C33 JP
3009 C36D33 JP
300C C38233 JP
300F C37F34 JP
3012 C38734 JP
3015 2AE640 LD
3018 C31E1D JP
301B C36534 JP
301E C31A33 JP
3021 C36E33 JP
3024 C35F32 JP
3027 C36433 JP
302A C39A34 JP

310

2FD2 * ***

2F88 * END and CR during insert and command input mode *************

2FF6 * ***

312

	Cover
	Contents
	Chapter 1
	Introduction
	Level II And DOS Overview
	Memory Utilization
	The Communications Region
	Level II Operation
	Part 1 - Input Phase
	Part 2 - Interpretation & Execution
	Part 3 - Verb Action
	Part 4 - Arithmetic & Math
	Part 5 - I/O Drivers
	Part 6 - System Utilities
	System Flow During IPL
	Reset Processing (non-disk)
	Reset Processing (disk systems)
	Disk BASIC

	Chapter 2
	Subroutines
	I/O Calling Sequences
	Keyboard Input
	Video Output
	Printer Output
	Cassette I/O
	Conversion Routines
	Data Type Conversions
	ASCII To Numeric Representation
	Binary To ASCII Representation
	Arithmetic Routines
	Integer Routines
	Single Precision Routines
	Double Precision Routines
	Math Routines
	Function Derivation
	SYSTEM FUNCTIONS
	Basic Functions
	Internal Number Representation

	Chapter 3
	Cassette & Disk
	Cassette I/O
	Assembler Object Code Format
	Cassette Recording Format
	Disk I/O
	Controller Commands
	Disk Programming Details
	DOS Exits
	Disk BASIC Exits
	Disk Tables
	Disk Track Format
	Disk DCB

	Chapter 4
	Addresses & Tables
	Level II Internal Tables
	Level II External Tables
	Program Statement Table (PST)
	Variable List Table (VLT)
	DCB Descriptions
	Video DCB (Address 401D)
	Keyboard DCB (Address 4015)
	Printer DCB (Address 4025)
	Interrupt Vectors
	Memory Mapped I/O
	Stack Frame Configurations
	FOR Statement Stack Frame
	GOSUB Stack Configuration
	Expression Evaluation
	DOS Request Codes

	Chapter 5
	A BASIC SORT Verb

	Chapter 6
	BASIC Overlay Routine

	Chapter 7
	Chapter 8

